
978-1-6654-4507-8/21/$31.00 © 2021 IEEE

From Specification to Silicon: Towards
Analog/Mixed-Signal Design Automation using
Surrogate NN Models with Transfer Learning

Juzheng Liu1, Shiyu Su1, Meghna Madhusudan2, Mohsen Hassanpourghadi1, Samuel Saunders1,
Qiaochu Zhang1, Rezwan Rasul1, Yaguang Li3, Jiang Hu3, Arvind Kumar Sharma3,

Sachin S. Sapatnekar2, Ramesh Harjani2, Anthony Levi1, Sandeep Gupta1 and Mike Shuo-Wei Chen1

1Department of Electrical and Computer Engineering, University of Southern California
2Department of Electrical and Computer Engineering, University of Minnesota
3Department of Electrical and Computer Engineering,Texas A&M University

Los Angeles, CA, USA
Email: juzhengl@usc.edu

Abstract—We propose a complete analog mixed-signal circuit
design flow from specification to silicon with minimum human-
in-the-loop interaction, and verify the flow in a 12nm FinFET
CMOS process. The flow consists of three key elements: neural
network (NN) modeling of the parameterized circuit component,
a search algorithm based on NN models to determine its sizing,
and layout automation. To reduce the required training data
for NN model creation, we utilize transfer learning to improve
the NN accuracy from a relatively small amount of post-
layout/silicon data. To prove the concept, we use a voltage-
controlled oscillator (VCO) as a test vehicle and demonstrate
that our design methodology can accurately model the circuit
and generate designs with a wide range of specifications. We
show that circuit sizing based on the transfer learned NN model
from silicon measurement data yields the most accurate results.

Index Terms—AMS circuit design automation, circuit model-
ing, layout automation, silicon verified CAD

I. INTRODUCTION

With the development of advanced technology, analog
mixed-signal (AMS) circuit design is becoming more of
a challenge due to increased relative design cost. As an
example, FinFET CMOS technologies involve much longer
simulation time in both schematic and post-layout level, and
impose more complex layout rules compared to bulk CMOS
technology. This severely limits design exploration for an
optimal design such as architecture, device sizing, and biasing,
given a target AMS specification and limited design time.
Therefore, AMS circuit design automation can play a crucial
role in resolving these challenges. There have been several
prior efforts aimed at implementing AMS design automation.
At the circuit architecture level, one approach has been to
adopt a mostly digital AMS architecture using digital standard
cells, allowing conventional digital design automation flow to
lower the design cost [1], [2]. However, this digital-library-
based AMS circuit design still requires the involvement of
human designers in schematic designs and layout iterations.
For schematic design exploration, Bayesian Optimization (BO)
[3] and Artificial Neural Networks (ANN) [4], [5] have been

applied to automatically size the netlist and significantly
reduce the effort required from human designers in the early
design stages. However, this prior art mainly focused on
schematic-level design without layout. [6] further explored
general circuit sizing for both schematic and layout with
Reinforcement Learning (RL). However, this can be very time
consuming for layout design since it requires a large number
of real-time post-layout simulation steps.

In this work, we propose a complete AMS circuit design
automation flow from target design specification to layout
with significantly reduced human intervention and design
time. To achieve design automation and facilitate design-
space exploration, we integrate an NN model-based circuit
sizing algorithm [4] with the ALIGN [7] layout automation
flow. To enhance the accuracy of the NN model for design
exploration while minimizing the training cost, we apply
Transfer Learning (TL) [8] to the NN model in later design
stages, including post-layout and silicon measurement. In a
nutshell, the NN-based circuit surrogate model is created using
relatively low-cost schematic simulations. Next, TL takes a
few post-layout simulation samples from the ALIGN layout
flow, and effectively transfers the schematic-level model to the
post-layout model, which can be used for layout-aware circuit
sizing. Lastly, to overcome the modeling and layout extraction
inaccuracy, especially for high frequency AMS circuit designs,
we further enhance the NN model by TL with the silicon
measurement data, i.e., a silicon-level NN model. To prove the
effectiveness of our design flow, we taped out various VCO
test structures and demonstrated that the circuit sizing based
on the silicon-level NN model yields the most accurate sizing
result.

From the standpoint of real applications, the proposed
design flow can be useful in many ways. If the user needs
to precisely design for a certain target circuit specification,
the flow can efficiently model and size the circuit with the
layout parasitic extraction (LPE) information included, which
can be much faster than manual layout iterations or layout-

20
21

 IE
EE

/A
CM

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

O
n

Co
m

pu
te

r A
id

ed
 D

es
ig

n
(IC

CA
D)

 |
 9

78
-1

-6
65

4-
45

07
-8

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
DO

I:
10

.1
10

9/
IC

CA
D5

19
58

.2
02

1.
96

43
44

5

mailto:juzhengl@usc.edu

level parameter sweeps. When multiple different design targets
need to be fulfilled, the advantage of this design flow can
be greater. Unlike BO- or RL-based circuit sizing, the NN
model based searching algorithm can quickly size the circuit
to meet different specifications without the need for extra
modeling or simulation, and the layout tool can automatically
generate the corresponding layouts without human interaction.
Furthermore, when silicon test structures are available (which
is usually the case for real product development), the model
can be further enhanced by TL and the sizing results can be
even closer to the expected values as shown by comprehensive
experiments.

The remaining part of the paper is arranged as follows:
Section II will discuss the existing circuit design automation
approaches. Section III will introduce the proposed design flow
in detail. Section IV contains the experimental results using
the proposed flow, and the last section will conclude the whole
work.

II. RELATED WORK

In this section, we will discuss several directions for circuit
design automation flow and compare the advantages and
disadvantages in terms of flow completeness, design time
consumption, and required human intervention.

A. Digital library based fully synthesized AMS circuit

The first widely used automatic AMS circuit generation
method is to use a digital standard cell library and realize the
AMS circuit function via digital gates. For instance, in [2],
the authors used a set of parallel NAND gates as a varactor
and binary scaled inverters as a digital-to-analog converter to
realize a fully synthesized digital controlled oscillator using a
digital synthesis and layout tool. In [1], the authors customized
the standard cell library to include some analog blocks, and
used RTL to synthesize an analog-to-digital converter. The
advantage of this method is that it leverages commercially
available digital design flow and hence accelerates the design
process. However, the mostly digital architecture cannot be
generalized to cover the entire range of AMS specifications.
Moreover, significant human design effort is still needed,
involving intensive layout iterations. Lastly, such a design
approach faces a lack of automatic netlist sizing tools that
can meet target analog design specifications.

B. Reinforcement learning-based circuit design automation

Different from the first approach, [6] leverages RL to design
the circuit for a target along a trajectory to automatically size
the components in the netlist and generate the schematic. From
a certain starting design point, the RL agent will make a
decision on how to change each design parameter, and the
simulation result for this step will be collected for the next
decision. The RL agent is trained by the policy gradient,
and requires a large number of environmental steps. After
training, for most of the design targets in the predefined target
space, the agent can successfully find the right design within
a few steps. From one perspective, this design approach is

able to generate different designs efficiently without human
intervention. Nevertheless, when considering the post-layout
design stage, the design agent requires real-time post-layout
simulations steps which can consume a significant amount of
computation time. Furthermore, when several designs with
various specifications are needed, the RL agent needs to
generate the trajectory with post-layout simulation steps for
each of the designs, which can be even more time-consuming.

C. Bayesian optimization-based circuit design automation

Another circuit sizing method uses BO to directly tune the
circuit under design. After determining the design parameters
and metrics, a reward is constructed as a function of the
metrics according to the design target. A few samples are
randomly selected from the design space to initialize the
Gaussian Process Regression (GPR) model between the design
parameters and reward functions. Then an acquisition function
is constructed according to the probabilistic prediction of the
GPR model in the whole design space, and the next sample
that maximizes the acquisition function will be selected and
used to update the GPR model. [3] shows that by deliberately
designing the reward and acquisition function, BO can effec-
tively optimize the circuit towards the target. Unfortunately,
layout-level design examples were not demonstrated in [3]. In
circumstances where a layout automation tool is incorporated
with the BO-based circuit sizing algorithm, this approach can
be time consuming, since the optimization process may involve
hundreds or even thousands of post-layout simulations.

D. Model-based circuit design automation

This class of methods avoids the time-consuming real-time
simulation requirement, mentioned in Sections II-B and II-C,
by first training a circuit surrogate model and then directly
applying search algorithms based on the surrogate model. In
[5], the authors train an NN as the surrogate model of the
circuit under design and apply a local minimum search to
find optimal circuit sizing. [4] further improves the model-
based search algorithm by breaking large-scale AMS circuits
into a set of smaller-scale modules, each represented by a
surrogate NN model. It then constructs a complete surrogate
NN model by connecting all the modules with a module-
linking graph to facilitate netlist sizing via a gradient-based
search algorithm. While the search over the surrogate model is
fast, the disadvantage of the NN model-based approach is the
need for a training dataset, and that it can involve expensive
simulation time especially when post-layout simulations are
considered.

To alleviate the aforementioned limitations, we propose an
AMS circuit design automation flow that combines the model-
based search algorithm and the ALIGN layout automation
tool to complete a design flow from design specification to
silicon. We further apply the TL technique to the model-
based searching flow to generate the post-layout/silicon-level
model and perform the circuit sizing with better efficiency and
accuracy.

1. NN-based
surrogate model

training

Circuit topology
definition

2. Layout automation
& Post-layout

simulation

3. Transfer learning-based post-layout circuit
modeling

Design Target

4. Automatic circuit
sizing/layout

Final GDS/tapeout

5. Transfer learning-
based silicon-level

circuit modeling

silicon testing data

Fig. 1: Proposed design flow from specification to silicon

III. DESIGN AUTOMATION FLOW

In this work, we propose a complete design automation
flow, as shown in Fig. 1, which can efficiently and accurately
size and layout a circuit netlist for a given specification.
Given a certain AMS circuit topology, we will first create
a circuit surrogate model in steps 1 to 3 with the layout
information considered, and then size and layout the circuit in
step 4 without the need for further simulations. In step 1, we
start with modeling the circuit Parameters-to-Metrics (P2M)
function by sampling with low-cost schematic simulations and
training of an NN as the circuit surrogate model from scratch.
To incorporate the LPE information into the surrogate model,
step 2 uses the ALIGN layout automation tool and creates
several layouts that are randomly selected in the design space.
In step 3, with the layouts from step 2 extracted and simulated,
TL is applied to efficiently transfer the schematic-level circuit
model to the post-layout model. Once the surrogate model
is prepared, in step 4, a fast gradient-based search algorithm
is applied to find the optimal design parameters given one or
multiple design specifications, and the same layout automation
tool is applied to generate the final GDSII. Furthermore,
if the design proceeds to fabrication, in step 5, the silicon
measurement results can be utilized by TL to further improve
the circuit modeling accuracy, and a more precise circuit
sizing can be derived. The details of each design step will
be discussed as follows.

A. NN-based surrogate model training

The first step of the proposed design flow is to characterize
the behavior of the AMS circuit under design. We build a
parameterized netlist and model the parameters (p) to metrics
(m) function:

m = f(p), (1)

where p is defined as a vector of tunable circuit parameters
such as transistor sizes, and m is defined as the vector of
performance metrics of the circuit block such as power con-
sumption. To model the function f by an NN, we generate the
training dataset through SPICE simulations. More specifically,
in the design space where each dimension is a parameter,
we define the upper and lower bond of each parameter and
randomly sample for design points. SPICE simulation is then
performed for each point, and the corresponding metrics are
used as the golden reference in the training.

When training an NN surrogate model, we try to minimize
the Mean Squared Error (MSE) between the model predicted

metrics and the simulation results. Since the numerical value of
different parameters/metrics can be different in orders of mag-
nitude, each parameter/metric is linearly re-scaled to [−1, 1]
according to the corresponding minimum and maximum value
of the whole dataset. When performing the training, we use
the Adam [9] optimizer to minimize the MSE defined as:

MSE =
1

k

k∑
i=1

(m̂i −mi)
2, (2)

where m̂i is the predicted ith metric from the model, mi is
the ground truth of the ith metric from the simulation, and k
is the number of metrics for this circuit block.

B. Automatic layout generation

Layout parasitics and layout-dependent effects are signifi-
cant in advanced technology nodes [10], [11] and they affect
circuit performance to a large extent. Both steps 2 and 4 of the
flow use a fast automatic layout generator and extract layout
parasitics to analyze the post-layout performance of a design.
The open-source ALIGN [7], [12] software is used for layout
generation.

ALIGN (“Analog Layout, Intelligently Generated from
Netlists”) takes a SPICE netlist of a circuit as input and
generates its layout as a GDSII file. For the proposed flow,
parameterized netlists of a circuit are fed into ALIGN, and
their corresponding layouts are extracted and simulated. Sev-
eral optimization steps are added to ALIGN to ensure a high-
performing layout is generated for each input circuit netlist.

Fig. 2: Overview of the ALIGN layout generation process [12]

ALIGN has a modular approach as shown in Fig. 2. The
main modules in ALIGN that were used in this work in-
clude netlist annotation where common building blocks called
“primitives” and symmetries in the circuit are detected. Design
rule capture is used to abstract the proprietary PDK into a
simplified grid which the other modules obey. Parameterized

primitive cell generation automatically builds layouts for the
primitives using the number of fins and fingers in a tran-
sistor as parameters. Hierarchical block assembly performs
placement and routing while meeting geometric and electrical
constraints provided to it.

To enhance layout quality so that it is comparable to manual
layouts, we perform several optimizations that are added on
top of the baseline version of ALIGN [13]. These include
1) primitive-level optimization, 2) signal routing optimization,
and 3) power mesh and power routing optimization. In this
section, we highlight these optimizations with the aid of
a ring-oscillator-based VCO circuit example. The important
performance metrics of the circuit are the oscillation frequency
(Fosc) and power consumption (PW) at different control
voltages (Vctrl). The circuit is laid out using a commercial
12nm CMOS FinFET technology.

TABLE I: VCO ALIGN layout comparison without
optimization (baseline) and with primitive (P), signal routing

(SR), and power routing (PR) optimization

Performance metric
ALIGN

(baseline)
ALIGN

(P)
ALIGN
(P+SR)

ALIGN
(P+SR+PR)

Vctrl
= 0V

Fosc (GHz) 2.8 3.2 4.5 4.8
PW (µW) 851 943 1272 1423

Vctrl
= 0.4V

Fosc (GHz) 1.4 1.4 1.5 1.6
PW (µW) 212 212 213 230

1) Primitive-level optimization: In ALIGN, primitives refer
to lowest-level blocks, consisting of a small number of devices
in the schematic, such as differential pairs and current mir-
rors. Primitives can be generated with multiple aspect ratios,
and different combinations of fins and fingers for the same
schematic sizing. Mesh routing is used inside the primitives.
Increasing the number of parallel metal wires and vias in the
mesh reduces resistive and increases capacitive parasitics that
affect the primitive performance. We automatically generate
the layout of a set of primitives with different aspect ratios and
with mesh routing structures within the primitive to mitigate
high wire resistances in lower metal layers of advanced
FinFET processes. We then simulate the performance of each
candidate primitive layout and choose the best-performing
primitives to be passed on to the hierarchical block assembly
module in ALIGN.

In Table I, the performance of ALIGN layouts for the VCO
circuit, with optimizations at different stages of ALIGN, are
compared. This circuit has a current starved inverter primitive.
The “ALIGN (baseline)” column shows the ALIGN layout per-
formance for the baseline implementation when no additional
optimizations are carried out. The “ALIGN (P)” column shows
the performance of the final ALIGN layout when the above
primitive-level optimization is carried out, choosing suitable
aspect ratios and mesh routing structures for the current-
starved inverter primitive. The oscillation frequency shows
an improvement over the baseline due to this primitive-level
optimization.

2) Signal routing optimization: The signal routing step in
ALIGN connects various primitives and hierarchical blocks
in the layout. These routes are typically much longer than

those found inside the primitive. In FinFET technologies, wire
and via resistances are significant in lower-level interconnect
layers. Resistive bottlenecks can be overcome by providing
wider routes and multiple vias (implemented as multiple
parallel wires with vias in FinFET technologies); however,
the capacitive parasitics increase in this case. The trade-off
between the resistive and capacitive parasitics is circuit- and
design-specific. The optimal number of parallel routes for
each signal net is determined, considering the impact of both
resistive and capacitive parasitics on circuit performance. This
number is then provided to the global and detailed router,
which uses this specification to create multiple parallel routes
at the nets.

In Table I, the “ALIGN (P+SR)” column shows the ALIGN
layout performance when both primitive-level and signal
routing optimizations are carried out. There is a significant
improvement in oscillation frequency at Vctrl = 0V when both
optimizations are applied. At this control voltage, the circuit
is resistance-limited as it draws a high current and the IR
drop at the nets is significant. Therefore, by adding parallel
wires, resistance and IR drop are lowered. At Vctrl = 0.4V, the
circuit is not as limited by resistance since it draws a smaller
current and hence the improvement in frequency after adding
an optimal number of parallel wires is smaller.

3) Power mesh construction and power routing optimiza-
tion: Routing from the power supply ports to the circuit
terminals is critical in analog circuits that continuously carry
large amounts of current. A power mesh structure is created to
reduce the resistance along this path and distribute the supply
across different parts of the circuit. The layers and number
of tracks in the power mesh can be controlled to provide low
resistance while using optimum resources. The routing from
the lower layers of the power mesh to the circuit terminals
is also critical. We add a further optimization to the baseline
version of ALIGN by adding parallel power routes to reduce
losses along this high resistance path.

In Table I, the “ALIGN (P+SR+PR)” column shows the
ALIGN layout performance with primitive-level, signal and
power mesh and power routing optimization added to the
baseline version. The performance of the circuit has improved
considerably. As compared to the baseline, these optimizations
collectively improve the frequency by 70% for Vctrl = 0V
and by 14% at Vctrl = 0.4V. As explained earlier, a lower
percentage improvement in the latter case is expected because
the circuit is not resistance-limited and adding parallel wires
does not significantly improve performance.

4) Runtime for VCO layout generation: The ALIGN layout
generator, modified to incorporate all three optimizations,
is capable of generating layouts for multiple input netlists
simultaneously and is suitable for generating training data.
It can generate a VCO layout with a runtime of 100s on a
RedHat system with an Intel(R) Xeon(R) Silver 4114 CPU
@2.20 GHz and 20 cores. It has a peak memory requirement
of 0.2% or 320 MB and 500 such layouts can be generated in
parallel on this system.

C. TL-based model enhancement for accurate P2M modeling

For step 3 of the proposed design flow, we need to in-
corporate the LPE information into the surrogate model to
ensure that the model can predict the real-world silicon result
more accurately. However, it is difficult to train a model
from scratch using only the post-layout dataset because post-
layout simulations can take a long time. For instance, in
12nm FinFET technology, post-layout simulations typically
consumes 20 to 30 times longer than the schematic-level
simulations for the same circuit. To make post-layout modeling
feasible, we utilize the TL technique from [8] to reuse the
schematic-level model. More specifically, we add two linear
layers to the input and output of a well-trained schematic-level
surrogate model. When performing the training, only the two
newly added layers are updated, and the remaining layers are
fixed. Mathematically, the post-layout model is constructed as
follows:

f̂layout(p) = Af̂sch(Cp+ d) + b = m̂lay, (3)

where f̂sch is the schematic-level surrogate model, and f̂layout
is the post-layout-level surrogate model. With n parameters
and k metrics, C (an n × n matrix) and d (a 1 × n bias
vector) are the mapping function of the parameters, i.e., the
added input linear layer, while A (a k × k matrix) and b (a
1× k bias vector) are the mapping function of the metrics, or
the added output linear layer. To justify the use of linear TL
layers between schematic and post-layout model, we perform
propagation delay analysis of an inverter for illustration pur-
pose. If we express the inverter delay as a function of the width
and length of the PMOS and NMOS, assuming NMOS and
PMOS have the same size, the schematic-level delay without
layout parasitics can be approximated as follows:

td,sch(p) = 0.69CLRon;p = (W,L), (4)

CL = CoxWL+ 2CovW + 2Cdb, (5)

Ron =
3VDD

4k′[(VDD − VT)Vdsat −
V 2
dsat

2]WL

(
1− 7

9
λVDD

)
(6)

If we regard the terms that are irrelavent to W and L in (6) as
constants and lump them into α, the equation can be simplified
as follows:

td,sch = α(CoxWL+ 2CovW + 2Cdb)
L

W
(7)

After the inverter is laid out, there will be a parasitic resistance
in series with Ron, and a parasitic capacitance in parallel with
CL, which can be reasonably estimated as

Rp ∝ 1/W = Runit/W (8)
Cp ∝W = CunitW (9)

With the parasitic effect, the delay will be changed to:

td,layout = α(CoxWL+2CovW+2Cdb+CunitW)
L+Runit/α

W
(10)

Corresponding to (3), to transfer the layout-level delay (10)
from schematic-level (7) as:

td,layout = Atd,sch(Cp+ d) + b;p = (W,L) (11)

we can annotate two new variables as:

W ′ =
2Cov + Cunit − CoxRunit/α

2Cov
W = θwW (12)

L′ = (L−Runit/α)/θw

and rewrite (10) into

td,layout = θ2wα(CoxW
′L′ + 2CovW

′ + 2Cdb)
L′

W ′ (13)

= θ2wtd,sch(p
′);p′ = (W ′, L′)

Compared to (11), we can get

A = (θ2w) (14)
b = (0)

C =

(
θw 0
0 1/θw

)
d = (0,−Runit/(αθw))

for the input and output linear mapping.
In conclusion, by adding two linear layers to the input

and output of the pre-trained schematic-level model, and only
training the two layers using post-layout simulation results,
it would be sufficient for modeling inverter delay in the post
layout stage. As a result, TL can significantly improves the
post-layout modeling accuracy with small number of training
samples and prevents over-fitting.

Similarly, the same TL technique can be applied to silicon-
level circuit modeling after the circuit is fabricated and tested,
i.e. step 5 of the proposed design flow. Based on the transfer-
learned post-layout circuit model, we can cascade additional
TL layers and re-train an accurate silicon-level model with
only a few silicon measurement samples. The experimental
results of the modeling accuracy will be demonstrated in
Section IV-A.

D. Automatic circuit sizing with post-layout/silicon-level
model

After preparing the surrogate model, we perform the au-
tomatic sizing of the circuit block to satisfy the desired
design targets. In step 4 of the proposed design flow, we
use the search algorithm illustrated in [4] to find multiple
circuit parameter candidates. This algorithm incorporates a
gradient-based parameter search using NN models of the
circuit blocks. In [4], the search algorithm only utilized NN
models trained from schematic-level simulations. In this paper,
we further enhance the model with post-layout simulation
and/or silicon measurement results, leading to much improved
search accuracy in terms of matching with the final silicon
performance.

Since we use an optimization-based search methodology, a
penalty function is designed to help find the optimal circuit

parameters. Additionally, this penalty function should be dif-
ferentiable everywhere for the gradient-based optimizer. Here,
we define the circuit sizing problem as:

argmin
p

go(m̂), (15)

s.t. : gi(m̂) ≥ 0,

ge(m̂) = 0,

m̂ = f̂(p),

where f̂ is the circuit surrogate NN model, go includes
the specifications that should be minimized, gi includes the
inequality constraints, and ge includes the equality constraints
that should be satisfied. For example, go can be the power
consumption that should be minimized, gi can be the band-
width of a system desired to be larger than 10MHz, and ge can
be the gain of a feedback system that should be exactly equal
to 2. For simplification, we assume go, gi and ge are a list
of subfunctions (i.e., g = [g1, g2, ...]) that are only related to
the circuit’s design metrics and are differentiable for the given
inputs. Knowing (15), we can construct the penalty function
for the automatic sizing problem as:

penalty(p) =
∑
j

wo
j × goj (f̂(p)) (16)

+
∑
k

elu(wi
k × gik(f̂(p)))

+
∑
l

we
l × (gel (f̂(p)))

2,

where ws are the optimization weights determined by the
importance of each specification and elu is the exponential
linear unit function. Function elu linearly increases the penalty
when the inequality is not satisfied and exponentially reduces
it if satisfied, and it is differentiable everywhere. To satisfy the
equality constraints, we use the MSE which is differentiable
and increases the penalty if it is not satisfied. To calculate
the gradients for the gradient-based optimization, we can
use the chain rule to first find the ∂penalty

∂m̂ and then derive
∂m̂
∂p . Machine learning tools such as TensorFlow can easily
complete both tasks and therefore compute the gradients of
the penalty function with respect to the design parameters.

The significant aspect of the NN model-based circuit sizing
algorithm is its capability to perform fast parameter search
without real-time simulations. Instead of conventional global
optimizers, such as simulated annealing used in most CAD
tools, it exploits advanced gradient-based optimizers such as
Adam. The Adam optimizer converges with fewer iterations
compared to the conventional global ones. However, since
it is a local optimizer, the final results can depend on the
initialization point. Therefore, a Monte-Carlo on the initial-
ization of the optimization is incorporated. In each Monte-
Carlo sample, the starting point is chosen randomly from the
parameter range; thus, Adam converges to different parameter
candidates. As shown in [4], the addition of the Monte-Carlo
technique increases the probability of finding globally optimal
results, within the precision of the NN modeling. It can surpass

VCO1

Output Driver and
MUX

…… VCO10

Input MUX

(a)Schematic

(b)Die photo(c) VCO1

(d) VCO10

VDD

Vctrl

ip

op on

Ictrl

in

nf_d_p

nfin_d_p

nf_d_n

nfin_d_n

nf_c_p

nfin_c_p

nf_c_n

nfin_c_n

Fig. 3: VCO design example (a) Schematic of the VCO (b) Die photo of the
fabricated chip (c) Layout illustration of VCO 1 (d) Layout illustration of
VCO 10

the conventional global optimizer performance, in terms of
both fewer iterations for convergence and more optimized
final results. After the sizing is done, we use the layout
automation tool described in Section III-B for the final GDSII
generation. To verify the effectiveness of the search algorithm,
in Section IV-B, we used the silicon measurement results as
the design target, performed the search using post-layout and
silicon-level models, and compared the results with the actual
circuit sizes.

IV. EXPERIMENTAL RESULTS

To demonstrate the effectiveness and efficiency of the pro-
posed AMS circuit design automation flow from specification
to the silicon level, we implement an array of VCOs in
12nm CMOS FinFET technology using the design flow. VCOs
are widely used in different kinds of AMS circuits such
as phase lock loop [14], analog to digital converters [15],
and computing circuits [16]. The schematic of the design is
shown in Fig. 3(a). This inverter-coupled VCO consists of
four identical stages, each stage has two differential inverter
drivers (in orange color) and two cross-coupled inverters (in
blue color). To be able to size this VCO design to satisfy
various design specifications, we assigned in total eight design
parameters to the VCO, which are the number of fingers (nf)
and number of fins per finger (nfin) for the NMOS (n) and
PMOS (p) of the inverter driver (d) and cross-coupled inverters
(c). With the help of layout automation, 10 different VCO
designs were taped-out and measured in terms of oscillation
frequency (Fosc) and power consumption (PW) with different

Schematic
train from

scratch

Layout
train from

scratch

Layout
Transfer
learning

Silicon
train from

scratch

Silicon
transfer
learning

M
SE

 lo
ss

~0.84% error

~50% error

~4.3% error

~20% error

~3.9% error

Fig. 4: Training and testing MSE loss comparison

VCO 1 VCO 1

VCO 10 VCO 10

(a) (b)

(c) (d)

Fig. 5: Layout NN model prediction, post-layout simulation and silicon testing
results comparison: (a) Fosc vs. Vctrl for VCO 1 (b) power vs. Vctrl for VCO
1 (c) Fosc vs. Vctrl for VCO 10 (d) power vs. Vctrl for VCO 10

control voltages. The die photo is shown in Fig. 3(b), and the
zoomed in VCO layout details are shown in Fig. 3(c) and (d)

A. Post-layout modeling verification

Following the circuit modeling steps in Section III, we
first densely sampled the parameters (the aforementioned eight
parameters) to metrics (Fosc and PW) function in the design
space via low cost schematic-level simulation, and trained a
3-hidden-layer MLP (number of neurons per layer: [8, 16,
32, 16, 2]) from scratch. All the parameters and metrics have
been linearly re-scaled to [-1, 1] according to the minimum
and maximum value in the dataset before training. As shown
in the first column of Fig. 4, with a large number of training
samples the VCO surrogate model can precisely predict the
schematic-level performance metric. In this particular case,
we used 5,250 training samples and 500 testing samples, and
the training sample generation took around 95 minutes with
parallel threads. We take the square root of the testing MSE
loss as the approximated prediction error since both metrics
have been re-scaled to [-1, 1].

With the well-trained schematic-level model, we utilized
the TL technique mentioned in Section III-C to efficiently
include the layout information into the model, and compared
the training and testing loss with the case when the post-layout

VCO 10

VCO 10

~24% error

~11% error

~3.9% error

SCH LAY Silicon
(a)

(b)

(c)

Fig. 6: (a) Prediction errors of silicon result using schematic-, layout- and
silicon- level NN model (b) Fosc vs. Vctrl for VCO 10 (c) power vs. Vctrl
for VCO 10 from post-layout simulation, silicon-level model prediction and
silicon testing

model is trained from scratch. In this example, we only used
a single layout to generate 20 training samples at 20 different
control voltages, and the trained model was tested with another
180 samples with different VCO parameters. Each of the post-
layout simulations took around 24 minutes. As shown in the
second and third columns of Fig. 4, while the model trained
from scratch have a 50% testing error because of overfitting,
TL can effectively reuse the information in the schematic-
level model and the transfer-learned model can predict the
post-layout metrics with only 4.3% error.

To intuitively demonstrate the post-layout modeling ac-
curacy, we compared the performance metrics from two of
the VCO designs using: 1. post-layout simulation, 2. post-
layout model prediction, and 3. silicon measurement result.
The results are shown in Fig. 5. For both VCO designs, the
surrogate model predictions can accurately follow the simu-
lation results, but they are still different from the silicon test
result. This discrepancy can be caused by modeling and layout
extraction inaccuracy especially for the high frequency cases,
and parasitic capacitance and resistance from the peripheral
testing circuitry.

B. Silicon results enhanced modeling and sizing

To fix the aforementioned discrepancy between post-layout
model prediction and silicon measurement results, we utilized
the post-layout surrogate model and performed TL with 40
training samples from the silicon measurement of VCO 1 and
2. For the testing, we used 160 measurement samples from
VCO 3 to 10, with 20 samples from each VCO by applying
20 different control voltages. As shown in the last two columns
of Fig. 4, we can obtain a much more accurate silicon-level
VCO model with TL compared to the model trained from
scratch given the same number of training samples.

To examine the prediction accuracy regarding the silicon
result, we used the 1. schematic-level model, 2. post-layout
model trained by TL, and 3. silicon-level model trained by
TL. As shown in Fig. 6(a), if we directly use the schematic-
level model or the post-layout model to predict the silicon test
results, the MSEs of predictions are approximately 8 and 3

TABLE II: VCO sizing results comparison (VCO 1 and 2 used for model training)

VCO# nf c n nf c p nf d n nf d p nfin c p nfin c n nfin d n nfin d p

VCO 3

schematic 5.21(5) 5.21(5) 10.40(10) 10.40(10) 9.60(10) 7.68(8) 7.68(8) 9.60(10)
post-layout 4.41(4) 4.41(4) 8.82(9) 8.82(9) 9.98(10) 7.99(8) 7.99(8) 9.98(10)
silicon-level 4.12(4) 4.12(4) 8.23(8) 8.23(8) 10.00(10) 8.00(8) 8.00(8) 10.00(10)
actual value 4 4 8 8 10 8 8 10

VCO 4

schematic 7.97(8) 7.97(8) 15.90(16) 15.90(16) 9.00(9) 7.20(7) 7.20(7) 9.00(9)
post-layout 7.02(7) 7.02(7) 14.00(14) 14.00(14) 9.99(10) 7.99(8) 7.99(8) 9.99(10)
silicon-level 6.02(6) 6.02(6) 12.00(12) 12.00(12) 9.99(10) 7.99(8) 7.99(8) 9.99(10)
actual value 6 6 12 12 10 8 8 10

VCO 5

schematic 8.71(9) 8.71(9) 17.40(17) 17.40(17) 9.86(10) 7.89(8) 7.89(8) 9.86(10)
post-layout 9.15(9) 9.15(9) 18.30(18) 18.30(18) 9.98(10) 7.99(8) 7.99(8) 9.98(10)
silicon-level 8.25(8) 8.25(8) 16.49(16) 16.49(16) 10.00(10) 8.00(8) 8.00(8) 10.00(10)
actual value 8 8 16 16 10 8 8 10

VCO 6

schematic 9.44(9) 9.44(9) 18.90(19) 18.90(19) 9.71(10) 7.77(8) 7.77(8) 9.71(10)
post-layout 9.72(10) 9.72(10) 19.40(19) 19.40(19) 9.95(10) 7.96(8) 7.96(8) 9.95(10)
silicon-level 9.91(10) 9.91(10) 19.80(20) 19.80(20) 9.95(10) 7.96(8) 7.96(8) 9.95(10)
actual value 10 10 20 20 10 8 8 10

VCO 7

schematic 5.75(6) 5.75(6) 11.50(12) 11.50(12) 7.75(8) 6.20(6) 6.20(6) 7.75(8)
post-layout 3.15(3) 3.15(3) 6.29(6) 6.29(6) 9.77(10) 7.81(8) 7.81(8) 9.77(10)
silicon-level 4.21(4) 4.21(4) 8.43(8) 8.43(8) 4.85 (5) 3.88(4) 3.88(4) 4.85(5)
actual value 4 4 8 8 5 4 4 5

VCO 8

schematic 6.14(6) 6.14(6) 12.30(12) 12.30(12) 7.20(7) 5.76(6) 5.76(6) 7.20(7)
post-layout 2.82(3) 2.82(3) 5.63(6) 5.63(6) 9.93(10) 7.95(8) 7.95(8) 9.93(10)
silicon-level 2.21(2) 2.21(2) 4.42(4) 4.42(4) 5.82(6) 4.66(5) 4.66(5) 5.82(6)
actual value 2 2 4 4 5 4 4 5

VCO 9

schematic 3.73(4) 3.73(4) 7.45(7) 7.45(7) 9.88(10) 7.90(8) 7.90(8) 9.88(10)
post-layout 3.65(4) 3.65(4) 7.29(7) 7.29(7) 8.60(9) 6.88(7) 6.88(7) 8.60(9)
silicon-level 3.09(3) 3.09(3) 6.19(6) 6.19(6) 8.66(9) 6.93(7) 6.93(7) 8.66(9)
actual value 3 3 6 6 10 8 8 10

VCO 10

schematic 6.72(7) 6.72(7) 13.40(13) 13.40(13) 9.29(9) 7.43(7) 7.43(7) 9.29(9)
post-layout 5.72(6) 5.72(6) 11.40(11) 11.40(11) 9.99(10) 7.99(8) 7.99(8) 9.99(10)
silicon-level 5.52(6) 5.52(6) 11.00(11) 11.00(11) 9.60(10) 7.68(8) 7.68(8) 9.60(10)
actual value 5 5 10 10 10 8 8 10

times higher than that of the transfer learned silicon model,
respectively. The oscillation frequency and power consumption
prediction by the silicon-level model are shown in Fig. 6(b)
and (c). Compared with Fig. 5, the model prediction can
precisely follow the silicon results (within 5% throughout the
frequency tuning range of VCO).

Using the accurate post-layout/silicon-level VCO model, we
can further perform the circuit sizing algorithm described in
Section III-D to validate the effectiveness of the proposed
design flow. We used the silicon measurement results of
testing VCOs (3-10) as the design targets (Fosc and PW
at a certain control voltage) and perform the circuit sizing
algorithm with the VCO surrogate model at different de-
sign stages (schematic-level, post-layout, silicon-level). On
an NVIDIA 1080 computing platform, the maximum time
consumption for one design is 70 seconds. The search results
based on the surrogate models are compared to the actual
VCO’s sizing, as shown in Table II. Note that, the sizing
results from the model-based search are continuous values,
but the 12nm FinFET technology requires discrete numbers
for device sizes. Therefore, the continuous sizing results are
rounded and annotated inside parentheses in the table. As
shown in the table, the sizing results from the schematic-level
model are significantly different from the actual parameter
values in silicon, with an average sizing difference of 35%.
Sizing with a post-layout model can find much closer design
points as compared to the actual parameter values in most
cases, and the average sizing difference reduces to 21%.
With the silicon-level model, the sizing results show much
improved precision in all cases as the average sizing difference

further reduces to only 5%. Accordingly, this proposed design
flow can significantly accelerate the design process and find
the desired design points with different design specifications,
especially with the silicon-level circuit model.

V. CONCLUSION

In this work, we propose a complete and efficient AMS
circuit design automation for circuit modeling, sizing, and
layout, with good generalization ability for various design
specifications. Proved by comprehensive experiments, with the
TL-based efficient modeling method and ALIGN-based layout
automation, we can generate a layout- or even silicon-level
surrogate NN model with excellent efficiency and accuracy,
and the model-based search algorithm can rapidly size the
circuit under design for one or multiple design specifications
without the need for further simulations or re-creating surro-
gate models. The flow can effectively accelerate the design
process, find the desired design points, and therefore reduce
the number of layout/silicon iterations in practical AMS circuit
design scenarios.

ACKNOWLEDGMENT

The authors wish to acknowledge support from the DARPA
POSH program (FA8650-18-2-7853) and program manager
Serge Leef. We also thank Global Foundries for access to
GF12LP technology. Qiaochu Zhang also acknowledges the
funding support from the University of Southern California
Provost’s Fellowship.

REFERENCES

[1] A. Waters and U.-K. Moon, “A fully automated verilog-to-layout syn-
thesized ADC demonstrating 56dB-SNDR with 2MHz-BW,” in 2015
IEEE Asian Solid-State Circuits Conference (A-SSCC), 2015, pp. 1–4.

[2] W. Deng, D. Yang, T. Ueno, T. Siriburanon, S. Kondo, K. Okada, and
A. Matsuzawa, “A fully synthesizable all-digital PLL with interpolative
phase coupled oscillator, current-output DAC, and fine-resolution digital
varactor using gated edge injection technique,” IEEE Journal of Solid-
State Circuits, vol. 50, no. 1, pp. 68–80, 2015.

[3] W. Lyu, P. Xue, F. Yang, C. Yan, Z. Hong, X. Zeng, and D. Zhou, “An
efficient Bayesian optimization approach for automated optimization of
analog circuits,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 65, no. 6, pp. 1954–1967, 2018.

[4] M. Hassanpourghadi, R. A. Rasul, and M. S.-W. Chen, “A module-
linking graph assisted hybrid optimization framework for custom analog
and mixed-signal circuit parameter synthesis,” ACM Transactions on
Design Automation of Electronic Systems, Jan. 2021. [Online].
Available: https://doi.org/10.1145/3456722

[5] Y. Li, Y. Wang, Y. Li, R. Zhou, and Z. Lin, “An artificial neural network
assisted optimization system for analog design space exploration,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 10, pp. 2640–2653, 2020.

[6] K. Settaluri, A. Haj-Ali, Q. Huang, K. Hakhamaneshi, and B. Nikolic,
“Autockt: Deep reinforcement learning of analog circuit designs,” in
2020 Design, Automation Test in Europe Conference Exhibition (DATE),
2020, pp. 490–495.

[7] K. Kunal, M. Madhusudan, A. K. Sharma, W. Xu, S. M. Burns,
R. Harjani, J. Hu, D. A. Kirkpatrick, and S. S. Sapatnekar, “ALIGN:
Open-source analog layout automation from the ground up,” in 2019
ACM/IEEE Design Automation Conference (DAC), 2019, pp. 77–80.

[8] J. Liu, M. Hassanpourghadi, Q. Zhang, S. Su, and M. S.-W. Chen,
“Transfer learning with Bayesian optimization-aided sampling for ef-
ficient AMS circuit modeling,” in 2020 IEEE/ACM International Con-
ference On Computer Aided Design (ICCAD), 2020, pp. 1–9.

[9] D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimization,”
in 2015 International Conference on Machine Learning (ICML), 2015.

[10] R. A. Rutenbar, “Analog circuit and layout synthesis revisited,” in 2015
ACM International Symposium on Physical Design (ISPD), 2015, p. 83.

[11] A. L. S. Loke, D. Yang, T. T. Wee, J. L. Holland, P. Isakanian, K. Rim,
S. Yang, J. S. Schneider, G. Nallapati, S. Dundigal, H. Lakdawala,
B. Amelifard, C. Lee, B. McGovern, P. S. Holdaway, X. Kong, and
B. M. Leary, “Analog/mixed-signal design challenges in 7-nm CMOS
and beyond,” in 2019 IEEE Custom Integrated Circuits Conference
(CICC), 2019, pp. 1–8.

[12] T. Dhar, K. Kunal, Y. Li, M. Madhusudan, J. Poojary, A. K. Sharma,
W. Xu, S. M. Burns, R. Harjani, J. Hu et al., “ALIGN: A system for
automating analog layout,” IEEE Design & Test, vol. 38, no. 2, pp. 8–18,
2020.

[13] https://github.com/ALIGN-analoglayout/ALIGN-public.
[14] Q. Zhang, S. Su, C.-R. Ho, and M. S.-W. Chen, “A fractional-N

digital MDLL with background two-point DTC calibration achieving -
60dBc fractional spur,” in 2021 IEEE International Solid- State Circuits
Conference (ISSCC), vol. 64, 2021, pp. 410–412.

[15] T.-F. Wu and M. S.-W. Chen, “A 40MHz-BW 76.2dB/78.0dB SNDR/DR
noise-shaping nonuniform sampling ADC with single phase-domain
level crossing and embedded nonuniform digital signal processor in
28nm CMOS,” in 2020 IEEE International Solid- State Circuits Con-
ference - (ISSCC), 2020, pp. 262–264.

[16] I. Ahmed, P.-W. Chiu, and C. H. Kim, “A probabilistic self-annealing
compute fabric based on 560 hexagonally coupled ring oscillators for
solving combinatorial optimization problems,” in 2020 IEEE Symposium
on VLSI Circuits, 2020, pp. 1–2.

	Juzheng Liu1, Shiyu Su1, Meghna Madhusudan2, Mohsen Hassanpourghadi1, Samuel Saunders1, Qiaochu Zhang1, Rezwan Rasul1, Yaguang Li3, Jiang Hu3, Arvind Kumar Sharma3,

