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Three-dimensional inspection of nanostructures such as integrated circuits is important for security and reliability
assurance. Two scanning operations are required: ptychographic to recover the complex transmissivity of the specimen,
and rotation of the specimen to acquire multiple projections covering the 3D spatial frequency domain. Two types of
rotational scanning are possible: tomographic and laminographic. For flat, extended samples, for which the full 180◦

coverage is not possible, the latter is preferable because it provides better coverage of the 3D spatial frequency domain
compared to limited-angle tomography. It is also because the amount of attenuation through the sample is approx-
imately the same for all projections. However, both techniques are time consuming because of extensive acquisition
and computation time. Here, we demonstrate the acceleration of ptycho-laminographic reconstruction of integrated
circuits with 16 times fewer angular samples and 4.67 times faster computation by using a physics-regularized deep
self-supervised learning architecture. We check the fidelity of our reconstruction against a densely sampled recon-
struction that uses full scanning and no learning. As already reported elsewhere [Opt. Express 28, 12872 (2020)], we
observe improvement of reconstruction quality even over the densely sampled reconstruction, due to the ability of the
self-supervised learning kernel to fill the missing cone. © 2023 Optica Publishing Group under the terms of the Optica Open

Access Publishing Agreement

https://doi.org/10.1364/OPTICA.492666

1. INTRODUCTION

Hard x rays offer non-destructive visualization and metrology of
nanoscopic details inside complex structures, such as integrated
circuits (ICs). Short wavelength and long penetration depth of
x rays enable probing into the volumetric interiors of ICs. X-ray
imaging instruments often incorporate the object rotation with
respect to x-ray illumination to improve the depth resolution of
reconstructions. It is desirable to select the rotation geometry
by carefully considering the objects’ geometrical properties. For
instance, for flat extended nanostructures such as ICs, the object’s
rotation axis can be oblique to the direction of synchrotron x rays,
i.e., laminographic imaging [1,2]. For flat, extended samples,
the oblique geometry keeps the amount of x-ray absorption and
scattering by the structures approximately the same regardless of

the object rotation, so that the volumetric interiors of ICs can be
more reliably reconstructed. This makes a clear distinction from
existing tomographic imaging methods [3–6], where the strengths
of absorption would vary across different rotation angles.

On the other hand, translational scanning of the object enables
a larger field of view reconstruction. Originally proposed for scan-
ning transmission electron microscopy (STEM), ptychography
leverages lateral movement of either the object or the illumination
to acquire several diffraction patterns from different lateral loca-
tions to add robustness to phase retrieval [7–10] and to reconstruct
a larger field-of-view object [11–13]. Objects are computationally
retrieved from the ptychographic measurements by some well-
established algorithms, such as a ptychographic iterative engine
(PIE) [11], difference map (DM) [14], least-square maximum like-
lihood (LSQ-ML) [15], etc. Alternatively, ptychography may also
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be conducted in the Fourier domain by replacing the illumination
with a set of plane waves incident at different angles [16–18].

As ICs have a flat geometry and an extended field of view, pty-
chography becomes synergistic with laminography in imaging
such nanostructures. Holler et al. demonstrated ptychographic
x-ray laminography on ICs fabricated with 16-nm technology with
18.9-nm resolution [19] using the laminographic nano-imaging
instrument (LamNI) [20], whose reconstruction quality easily

surpassed that of x-ray ptychographic tomography [6]. In a typical

x-ray ptycho-laminographic imaging apparatus as depicted in

Fig. 1(A), synchrotron x rays obliquely illuminate ICs with the

angle of θ between the direction of x-ray propagation and the

rotation axis. ICs are scanned from a few thousand laminographic

angular views, where angular sampling depends on the sample

thickness, the resolution, and the laminographic angle [19], and

Fig. 1. Accelerated deep self-supervised ptycho-laminography. (A) Ptycho-laminographic imaging geometry. Synchrotron x rays illuminate a sample of
integrated circuits in the ptycho-laminography geometry, with the sample rotating around the oblique laminographic axis and scanned over a few thou-
sand angles. For each ptychography scan, the sample is laterally scanned at several hundred different locations. (B) Equivalent imaging geometry. Forward
operators Hn (n = 1, 2, ... , N) are defined according to each laminographic rotation. (C) Proposed physics-informed machine learning framework. Our
pre-processor translates experimental ptycho-laminographic measurement from the detector plane to the sample domain with minimal processing using a
ptychographic reconstruction algorithm. ADePt generates a 3D image of integrated circuit morphology from the pre-processed projections throughout the
optimization process. (D) Deep neural network architecture for self-supervised learning. The proposed architecture is essentially an encoder–decoder con-
volutional neural network with skip connections and receiving random noise as input. The output is the image. Code is publicly available at [21].
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for each ptychography scan, x rays laterally scan the ICs at several
hundred different lateral positions.

Three-dimensional information of nanostructures is retrieved
using a two-step iterative update process based on our ptycho-
laminographic measurements, i.e., reconstruction from the
densely sampled dataset (or densely sampled reconstruction): (1) a
thousand iterations of a ptychographic reconstruction algorithm
processes hundreds of diffraction patterns to get a projection for
each of the 2000 ptychograms (more details about the reconstruc-
tion are in Section 2.B); and (2) a volumetric reconstruction is
formed by the laminographic synthesis of all projections. The
missing cone in the Fourier domain is filled in during the post-
processing step. The densely sampled reconstruction, however,
results in a long data acquisition and computation time due to the
strict angular sampling requirement [19] of ptychograms and the
iterative reconstruction of projections.

Here, we demonstrate up to an aggregate 9.57-fold time sav-
ings in x-ray ptycho-laminographic reconstruction by using a
physics-regularized deep self-supervised learning architecture,
called accelerated deep self-supervised ptycho-laminography
(ADePt). We achieved this acceleration by reducing the number
of angular samples by 16 times and the computation time by 4.67
times. Considering the memory limitations in GPUs, ADePt yields
the reconstruction of 4.36× 4.36× 3.92-µm3 ICs within 2 h;
see Table S1 for more timing details. We provide both quantita-
tive and qualitative comparisons on the performance of ADePt
with the densely sampled reconstruction using the bit-error ratio
(BER) and 3D power spectral density. Finally, we observe that the
self-supervised learning kernel fills missing cones from a much
fewer number of projections compared to the densely sampled
reconstruction.

ADePt consists of two components: a lightweight pre-processor
and a deep neural network as illustrated in Fig. 1(C). The pre-
processor consists of a few iterations of maximum likelihood
ptychography, projection matching alignment (PMA), and cen-
ter cropping, and works as an approximate inverse operator on
diffraction patterns. The network parameterizes a 3D structure
of ICs by considering both network-structure and physics priors.
The proposed learning approach makes significant advances from
the baseline in terms of the following: (1) ADePt does not use the
ground truth structure of ICs for its learning process, which sets
it apart from any supervised machine learning approaches and
saves a significant amount of time and resources from the ground
truth preparation, and operates on only a single set of experimental
measurements; and (2) ADePt explicitly leverages the physical
forward model of the x-ray ptycho-laminography geometry, which
tightly regularizes the solution space and guides the algorithm to
generate a physically feasible reconstruction even when the number
of projections is largely reduced.

2. METHODS

A. X-Ray Ptycho-Laminography Experiment

Ptycho-laminography measurements were carried out at the coher-
ent small-angle x-ray scattering (cSAXS) beamline at the Swiss
Light Source at the Paul Scherrer Institut (PSI), Switzerland. An IC
produced with 16-nm technology was scanned with synchrotron
x rays of 6.2 keV using LamNI [20]. The laminographic angle
between the rotation axis and the beam propagation axis was fixed
to be 61◦, and the angular step of projections was 0.18◦, making

2000 scans in total. Diffraction patterns were recorded by a step
scan at around 200 lateral locations with an in-vacuum Eiger
1.5-M detector (pixel size: 75 µm, sample-to-detector distance:
5.23 m, exposure time: 0.1 s) [22].

B. Baseline Method and Densely Sampled
Reconstruction Preparation

Densely sampled reconstruction preparation takes experimental
ptycho-laminographic measurements from 2000 ptychography
scans and uses a three-step baseline method: (1) for every pty-
chography scan, projections are retrieved by 1000 iterations of the
least-square likelihood ptychographic algorithm [15] as imple-
mented in PtychoShelves [23]. This ptychographic reconstruction
step takes far-field x-ray diffraction patterns (512× 512 px2, pixel
size: 75 µm) recorded at 200 different lateral locations. (2) The
projections are precisely aligned to each other using the PMA
algorithm [24]. (3) The aligned projections are synthesized to
reconstruct a volumetric structure using the standard Fourier
backprojection (FBP) method, followed by the recovery of missing
cone information. Data processing exactly follows the steps in [19].
These steps result in the densely sampled reconstruction with the
voxel size of 27.2 nm, which is larger than the resolution of 19 nm
reported in [19] due to a fewer number of projections acquired and
a larger step size for each scan.

Despite the intensive densely sampled reconstruction, it
remains ambiguous especially for longitudinal layer features,
as a missing cone exists in the k-space due to the oblique x-ray
illumination in the ptycho-laminographic imaging [19].

C. Architecture

The network design is based on a modified U-net architecture
with a random input noise, following the implementation of
a deep image prior [25], which has been widely used for many
computational imaging applications, including image dehazing
[26], super-resolution [25,27], phase retrieval [28,29], tomogra-
phy [30,31], and magnetic resonance imaging (MRI) [32]. This
implementation shares a similarity with coordinate-based learning
approaches [33–36]. The deep neural network is implemented
as an encoder–decoder architecture with skip connections [37] as
shown in Fig. 1(D). Network weights are initialized with Xavier
uniform distribution [38] (gain: 0.2). Following the convention of
a deep image prior [25], random input noise z is given to the net-
work, sampled from a uniform distribution z∼UM×N×L [0, 0.1].
The encoder reduces the lateral dimensions by a factor of four,
and the decoder restores the dimensions back to the original. The
architecture is chosen to have skip connections to relay the encoder
features to the decoder according to our finding that an hour-
glass architecture does not reliably render high-frequency details.
Finally, a sigmoid-like activation function sets the range of output
values of the ICs within [−0.03, 0.03].

D. Pre-processing and Network Optimization

Figure 1(C) shows our pre-processor in three steps: (1) 10 times
fewer iterations, i.e., 100, of the LSQ-ML ptychographic algo-
rithm are run to obtain intermediate projections; (2) the PMA
algorithm aligns the intermediate projections to match with each
other, which is applied to both densely sampled and reduced
datasets; and (3) 256× 256 center pixels are cropped from the
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aligned projections to be used for the reconstruction process with
ADePt. Figures S1 and S2 in Supplement 1 show a qualitative and
quantitative analysis, summarizing the sensitivity to the alignment
of projections.

ADePt iteratively updates the randomly initialized weights in
the deep neural network according to the loss functional

ŵ= argminw

[
1

2

N∑
n=1

‖Hn x −HPF(yn)‖
2
2 + λTV(x )

]
,

where x = Tw(z) .
(1)

Tw(·) is a deep neural network that takes random noise z as input,
where w represents its parameters, Hn a physical forward model
corresponding to the nth ptychography scan, yn a pre-processed
projection of the nth ptychography scan, HPF(·) a high-pass filter
on yn ’s, and TV(·) a total-variation (TV) regularization operator
acting upon the 3D IC structure x .

The problem of determining the structure x from given diffrac-
tion patterns is highly ill posed, primarily because of three factors:
(1) a tenfold reduction in the number of maximum-likelihood
ptychography iterations to acquire projections, (2) a decrease of
eight to 16 times in the number of projections used for the recon-
struction, and (3) the general tendency of low spatial frequencies
to dominate the training of neural networks as we have pointed
out before [39]. To address the imbalanced influence of the low
spatial frequencies, we enforced a stronger prior during network
training by applying a high-pass filter to the projections, following
a similar approach as described in [39]. To achieve this, we used
wavelet decomposition to design the filter. The projections were
decomposed into four levels of wavelet scattering coefficients
using the Daubechies wavelet (db8) [40]. This facilitates the clear
identification of the low- and high-spatial-frequency components
through visualization at different levels, making it a better alter-
native to a fast Fourier transform (FFT)-based high-pass filter.
For each subsequent level of decomposition, the wavelet coeffi-
cients were multiplied by a factor of 2.5. As a result, this method
effectively amplifies the emphasis on higher spatial frequencies in
the projections while ensuring that the total energy of the filtered
projections remains normalized to that of the original projections.

While this approach enabled us to obtain a solution with
accentuated fine details, it does come at the cost of unwanted
high-spatial-frequency artifacts in the reconstruction (as depicted
in Fig. 5(C)). To mitigate the unwanted artifacts, we incorporated
a TV regularization term into the training loss function, which
promotes sparsity in the image gradient and effectively suppresses
the artifacts. Considering that the nominal spatial frequency of
features in ICs varies with depth, the TV regularization param-
eter λ is set differently across the z axis to control the regularizer
strength, i.e., λ= 3× 10−6 for z< 2.75 µm and λ= 3× 10−8

otherwise. We assigned the larger value to shallow layers with
coarser features and the smaller value to deeper layers with finer
features. The determination of coarse and fine features was based
on the power spectral density of layer features in the densely sam-
pled reconstruction, serving as the ground truth (refer to Fig. S3
in Supplement 1 for more details). Alternatively, one can refer to
the circuit diagram used for fabrication to identify the layers with
coarse and fine features and determine the appropriate range and
values of the regularization parameter.

The reconstruction process is run for 1500 iterations using the
Adam optimizer [41] with β1 = 0.9, β2 = 0.999, and the initial
learning rate of 2× 10−4, which is halved after 1000 iterations.

3. RESULTS

A. Qualitative Performance Comparison

We prepare the densely sampled reconstruction for the perform-
ance comparison using the two-step iterative method with 2000
projections sampled every 0.18◦ angular increment 1ϕ. Ptycho-
laminographic measurements are processed with 1000 iterations
of the LSQ-ML algorithm for each ptychography scan, followed
by the PMA, the filtered backprojection (FBP), and the recovery of
missing cone information [19].

In this study, we assess ADePt’s 3D physically feasible render-
ing performance under sparsely sampled conditions by making
a comparison between the densely sampled reconstruction and
the ADePt reconstructions. Here, we increase 1ϕ from 0.18◦ to
1.44◦ and 2.88◦, limiting the number of available projections to
250 and 125 from 2000. In Fig. 2, we visualize reconstructed IC
features at five different depths, i.e., z-axis locations, using the
two-step baseline and ADePt with 250 and 125 projections to
qualitatively compare them with the densely sampled reconstruc-
tion. Visually comparing the two, ADePt reconstructions are more
closely aligned to the densely sampled reconstruction for both
cases—even better than the densely sampled reconstruction with
greater feature contrast to identify high-spatial-frequency details
that come at the cost of the ability to quantify—although the FBP
reconstructions show much lower spatial resolution due to accrued
artifacts from the missing cones and sparse sampling. We support
the argument with the aid of the cross-section profiles. Figure 3
visualizes the reconstructions from different axial views. Moreover,
ADePt benefits from the sparse sampling scheme, resulting in
×6.58 and ×9.57 aggregate reduction in computation time with
250 and 125 projections, respectively, compared to the densely
sampled reconstruction. For more details on time breakdown,
please see Table 1.

B. Power Spectral Density Representation

It is easier to describe the aforementioned artifacts in a different
domain as both the terms sparse sampling and missing cones
are defined based on the k-space. We visualize both the densely
sampled reconstruction and FBP and ADePt reconstructions as
k-space representations by means of power spectral density, which
is the Fourier transform of the autocorrelation function, i.e., the
Wiener–Khinchin theorem.

In Fig. 4, we provide 2D power spectral density profiles of the
baseline and ADePt reconstructions using 250 and 125 projections
along with the densely sampled reconstruction. Both FBP recon-
structions show their missing cones rooted in an oblique rotation
axis in the ptycho-laminography geometry. Sparse-sampling arti-
facts are also easily noticed in the reconstructions, which provides
explanations on lack of spatial resolution as shown in Fig. 2.

Our framework, however, learns from experimental ptycho-
laminographic measurements how the missing parts should be
filled to represent physically feasible IC solutions guided by the
physical and network-structure priors. Moreover, comparing
the densely sampled reconstruction and ADePt reconstructions
in k-space, we notice that ADePt renders ICs even better—the

https://doi.org/10.6084/m9.figshare.23387174
https://doi.org/10.6084/m9.figshare.23387174
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Fig. 2. Comparison between FBP and ADePt’s reconstructions and the densely sampled reconstruction. (A) We exploit physics-informed machine
learning to reliably reconstruct integrated circuits with a reduced number of projections, i.e., 125 and 250 out of 2000, and qualitatively compare the FBP
and ADePt reconstructions with the densely sampled reconstruction. Please note that the colormaps used in some reconstructions are selected differently.
Specifically, for (1) the densely sampled reconstruction, the colormaps of layers 2–5 are set to its 2.5th and 80th percentiles, and for (2) the FBP reconstruc-
tions with both 125 and 250 angles, the colormaps of layers 2–5 are fixed to its 12.5th and 80th percentiles. For all other figures, the colormaps are fixed to
the minimum and maximum values of their respective reconstructions. (B) We qualitatively compare the reconstructions within their respective zoomed-in
areas for better evaluation. The colormap conventions followed in (A) are also applied.
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Fig. 3. Qualitative comparison among y z cross sections of different reconstructions. Although the densely sampled reconstruction yields the best con-
trast among coarser features, missing cone artifacts are not completely addressed (see red arrows). Some finer features can be displayed more clearly with
ADePt than with the FBP reconstructions and the densely sampled reconstruction, at the cost of ability to quantify (see yellow boxes).

Table 1. Data Preparation and Computation Time Breakdown

Densely Sampled Reconstruction
(2000 Angles)

ADePt (250 Angles) ADePt (125 Angles)

Data acquisition
a

11.1 1.38 (×8 faster) 0.694 (×16 faster)

Data computation
b

4.27 0.958 (×4.46 faster) 0.914 (×4.67 faster)
(1) Iterative update (maximum
likelihood)

4.05
c

0.0890 0.0445

(2) Reconstruction - data I/O,
alignment, synthesis

0.218
d

0.869 0.869

Total time (h) 15.4 2.34 (×6.58 faster) 1.61 (×9.57 faster)
aData acquisition uses LamNI [20] to acquire ptycho-laminographic measurements over the integrated circuit sample (26.2× 38.2× 3.92 µm3).
bData computation includes an iterative ptychographic update step, data I/O, projection matching alignment [24], and laminographic synthesis. Densely sampled

reconstruction uses 1000 iterations of the LSQ-ML algorithm [15,23], and ADePt reconstructions use 100 iterations of the same algorithm. The data computation
time breakdown comparison is made on the reconstructed sample (4.36× 4.36× 3.92 µm3).

cIterative ptychographic update of the densely sampled reconstruction is performed on 10 GTX 1080 GPUs.
dData reconstruction process of the densely sampled reconstruction is based on 1 V100 GPU. All other computations use 2 V100 GPUs.

missing cone of the densely sampled reconstruction remain unin-
tentionally accentuated, as shown with black arrows in Fig. 4,
whereas the cone filled and spectrum recovered with ADePt is more
continuous. As already reported elsewhere [42], it is plausible that
ADePt could outperform the baseline method even with more
limited amount of data given as the proposed framework takes a
self-supervised approach, thus completely agnostic to the type of

specimen. However, this does not preclude future use of priors to
boost performance.

C. Quantitative Evaluation

We use BER as a metric to quantify the ratio of erroneous occu-
pancy in the reconstructions with reference to the densely sampled
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Fig. 4. Power spectral density analysis for qualitative comparison. We visualize FBP and ADePt reconstructions and the densely sampled reconstruction
in k-space to visualize artifacts due to missing cone and sparse sampling. Cuts are made along the ky−kz and kx−ky planes (red arrows). We demonstrate
that ADePt provides reconstructions with fewer artifacts in k-space, considering that the FBP reconstructions display artifacts due to the angular subsam-
pling and missing cone, and that the densely sampled reconstruction shows artifacts due to imperfect missing cone filling (black arrows).

reconstruction as the ground truth [43]. Binary objects such as
ICs are particularly suited to this metric for quality assessment.
Although many printing materials comprise ICs, including cop-
per, tungsten, and aluminum, here we just treat the ICs as binary
with regard to the occupancy, irrespective of material. Using the
expectation–maximization (EM) algorithm in the context of
Gaussian mixture models, we first binarize the densely sampled
reconstruction to get the ground truth. However, since the densely
sampled reconstruction may still be ambiguous especially for lon-
gitudinal features due to missing cones in the Fourier domain (see
Fig. 4), the layers with ambiguous features will not be accurately
binarized. Thus, we exclude the layers with binarization errors
from our quantitative analyses in Section 3.C. More details can be
found in Fig. S5 in Supplement 1.

In Fig. 5(A), we compare ADePt’s performance with the base-
line method’s using BER and the Pearson correlation coefficient
(PCC). We demonstrate that ADePt outperforms the baseline
method for both conditions with fewer projections, but the dif-
ference between the two methods becomes more statistically
significant when only 125 projections are considered during the
reconstruction process, which suggests that ADePt is more tolerant
to sparse sampling. The layers located at z> 2.75 µm are con-
sidered to have finer circuit features, according to typical design
rules of ICs (Fig. S3 in Supplement 1 illustrates this further). This
implies that higher-frequency details are better reconstructed with
the physics-informed self-supervised machine learning, even in
regions with fine transverse details.

D. Ablation Study

As illustrated in the loss function in Fig. 1(C), we employ two key
design elements to the implementation: (1) high-pass filtering
on the intermediate projections to improve feature contrast and
to enforce high-frequency bias to the network; and (2) TV regu-
larization in the loss functional to suppress residual artifacts. We
assess the relative contribution of each design element in our pro-
posed framework by ablating each one of the following elements in
succession: high-pass filter on projections and TV regularization.

The results are shown in detail in Fig. 5. One salient observation
is that in the region of all features (z between 0 and 3.92 µm),
performance degrades by equal amounts if the high-pass filter or

TV term is ablated. On the other hand, in the fine feature regime
(z between 2.75 and 3.92 µm), the significance of the high-pass
filter is higher, as evidenced in Fig. 5(B) by the catastrophic drop
in performance when it is ablated. Visual inspection of the ablated
reconstructions in Fig. 5(C) confirms these trends.

4. DISCUSSION

ADePt provides a 3D estimate of ICs from experimental ptycho-
laminographic measurements using deep self-supervised learning.
The proposed framework makes explicit use of a physical forward
model to obtain the image iteratively, and regularizes through the
chosen sparsity-enforcing neural network kernel and an additional
TV penalty in the loss function. This is a significant departure from
supervised learning approaches that typically require ground truth
to prepare a paired dataset for training, which is expensive.

Supervised methods’ performance is also limited in the absence
of accurate ground truth. For IC imaging, this is almost always
the case since obtaining the true shape is challenging. In earlier
supervised work [43], we used reconstructions from dense angular
sampling as ground truth. Here, we observe that ADePt fills the
missing cone more effectively than the densely sampled recon-
structions, as Fig. 4 clearly illustrates. That the IC geometry is very
compatible with our chosen auxiliary TV regularizer strengthens
this claim. Further investigation of the ADePt scheme’s perform-
ance in different types of specimens is a good topic for future
work.

In this work, we treat all ptycho-laminographic projections as
equal. However, in previous work [44], we have demonstrated that
there is a benefit to weighing each differently, according to an atten-
tional scheme [45,46]. Also, coordinate-based learning methods
[33–36] may be beneficial to further increase the reconstruction
volume, as the methods generally take fewer trainable parameters
than convolutional neural network architectures. Finally, as an
alternative to using the high-pass filter and TV regularization, one
could consider employing nonlinear diffusion regularization [47]
to handle slowly spatially varying backgrounds, as depicted in “(-)
HPF” in Fig. 5(C). We leave this for future work as well.
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Fig. 5. Quantitative analysis of reconstructions and ablation study. (A) We use bit-error rate (BER) and Pearson correlation coefficient (PCC) to com-
pare ADePt reconstructions with the baseline for different scales of features in the integrated circuits. (B) Ablation study. We assess relative contribution
of each design element, i.e., high-pass filtering (HPF) and total-variation (TV) regularization, to the final reconstruction by removing one at a time from
the complete model. We incorporate HPF to enforce a high-frequency content bias to our deep neural network and TV regularization to suppress spu-
rious high-frequency artifacts in the background. Figure S4 in Supplement 1 illustrates (A) and (B) further using another quantitative metric. (C) The
self-supervised learning algorithm behaves unfavorably when each component is ablated. TV regularization suppresses high-frequency artifacts, and HPF
improves the spatial resolution of features recovered by the algorithm (red arrows).
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