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Abstract
It is shown that isospectral Hamiltonians and partner potentials can be found for self-consistent
solutions of the Schrödinger and Poisson equations in the presence of identical non-interacting
electrons. Perturbation of these systems by an external electric field can be used to break symmetry
and spectrally distinguish between states. For a given pair of partner potentials, symmetry may
also be broken by a change of electron density or temperature.

1. Introduction

Supersymmetric quantum mechanics describes Hamiltonians with time-independent potentials whose
partner Hamiltonians are isospectral (with the possible exception of the ground state), but do not
necessarily have the same eigenfunctions [1–3]. It is also possible, using supersymmetric quantum
mechanics, to describe families of Hamiltonians with strictly isospectral eigenvalues [3–5]. Therefore,
supersymmetry may be considered a resource to create spectrally identical systems with different eigenstates.
Recent applications of supersymmetric quantum mechanics include spectral design of electron states in
Schrödinger Hamiltonian systems [6], analytic solutions for electrons in graphene [7], and the design of
laser arrays [8, 9].

The existence of isospectral Hamiltonians and their associated partner potentials leaves unanswered how
they may be distinguished. Such questions are analogous to the well-known problem of ‘hearing the shape
of a drum’ [10]. In the case of partner potentials, the isospectral nature of the corresponding Hamiltonians
precludes the possibility of ‘hearing’ any difference between the unaltered potentials. However, it is possible
to separate the eigenvalues of the partner potentials by introducing perturbations, thereby exploiting the
fact that the eigenfunctions (and the perturbed potentials themselves) are not identical. In particular, a
uniform electric field can often be used to separate the energy eigenvalues of a single-electron Hamiltonian
and its supersymmetric partner. For certain potentials, these changes in energy eigenvalues can provide a
sensitive method of distinguishing otherwise isospectral systems (see subsection 7.2).

In a condensed matter system such as a doped semiconductor, the presence of an ionized-charge donor
concentration and band-edge potential profile requires a self-consistent solution of the Schrödinger and
Poisson equations. Prior research on supersymmetry in semiconductor systems has not addressed this
self-consistency [11,12]. In the following, we study this for the special case of non-interacting electrons in a
semiconductor quantum well structure. The Schrödinger and Poisson equations are solved simultaneously
to account for the effect of the charge distribution on the potential [13–16], as described in section 3.

Generally, it is not obvious that supersymmetry can be applied to systems that include the presence of
many electrons. The earliest formulations of supersymmetric quantum mechanics relate to the Schrödinger
equation describing the wavefunction of a single particle. Such a formulation is not sufficient in the
presence of ionized donors, as discussed in section 6. Evaluating partner potentials in the presence of
multiple non-interacting charged particles described by coupled Schrödinger and Poisson equations
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requires a modified method, as described in section 5. This latter method is used to explore symmetry
breaking in sections 7 and 8.

2. Supersymmetric quantum mechanics

A single electron of bare mass m0 in a (non-self-consistent) potential well V(x) has a ground state ψ0 with
eigenenergy E0. If V(−)(x) = V(x) − E0, the Hamiltonian

Ĥ(−) = − �
2

2m0

d2

dx2
+ V (−)(x) (1)

has ground state ψ0 with eigenenergy E(−)
0 = 0, from which it follows that

Ĥ(−)ψ0(x) = − �
2

2m0

d2ψ0

dx2
+ V (−)(x)ψ0 = 0 (2)

so that (adopting the notation ψ′′
0 = d2ψ0

dx2 )

V (−)(x) =
�

2

2m0

ψ′′
0

ψ0
. (3)

If Â = �√
2m0

d
dx + W(x), where the superpotential W(x) = − �√

2m0

ψ
′
0

ψ0
, then Ĥ(−) = Â†Â [3]. The

Hamiltonian

Ĥ(+) = ÂÂ† = − �
2

2m0

d2

dx2
+ V (+)(x) (4)

is then the supersymmetric partner of Ĥ(−), where [17, 18]

V (+)(x) = −V (−)(x) +
�

2

m0

[
ψ

′
0

ψ0

]2

. (5)

If ψ(−)
n is an eigenfunction of Ĥ(−) with eigenenergy E(−)

n , then

Ĥ(+)
(

Âψ(−)
n

)
= ÂÂ†Âψ(−)

n

= ÂĤ(−)ψ(−)
n = E(−)

n

(
Âψ(−)

n

)
. (6)

Thus Âψ(−)
n is an eigenfunction of Ĥ(+) with eigenenergy E(+)

n = E(−)
n . If ψ(−)

n is normalized, so that
〈ψ(−)

n |ψ(−)
n 〉 = 1, then

〈Âψ(−)
n |Âψ(−)

n 〉 = 〈ψ(−)
n |Â†Â|ψ(−)

n 〉

= 〈ψ(−)
n |Ĥ|ψ(−)

n 〉 = E(−)
n . (7)

Therefore, the normalized eigenfunctions of V(+)(x) are [17, 18]

ψ(+)
n =

1√
E(−)

n

Âψ(−)
n , (8)

where n = 1, 2, 3, . . . . The ψ(+)
n states are numbered starting from 1 because there is no ψ(+)

n state with the
same energy as the ψ(−)

0 state.

3. Self-consistent model

The model we adopt requires self-consistency between solutions to the Schrödinger equation for
non-interacting electrons and the Poisson equation describing the total static potential due to the spatially
varying charge distribution [13–16]. The many-body Coulomb interaction between electrons is ignored.

3.1. Zero temperature
Consider a semiconductor medium of permittivity ε that is configured as a planar potential well with
on-site potential Vos(x). An ionized donor concentration ND(x) creates a density n(x) of electrons in the
conduction band. Effective electron mass is m∗

e and the electrons are assumed to be non-interacting. Each
electron is constrained to motion in the x-direction and each state obeys the Schrödinger equation

− �
2

2m∗
e

d2

dx2
ψ(x) + Vtot(x)ψ(x) = Eψ(x), (9)
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where
Vtot(x) = Vc(x) + Vos(x) (10)

and the electric potential energy due to ionized donors and other electrons in the conduction band is
Vc = −eΦ(x) [13]. The electric potential Φ(x) satisfies Poisson’s equation

d

dx

(
ε

d

dx

)
Φ(x) = −e(ND(x) − n(x)), (11)

where n(x) is the electron density

n(x) =
∑

j

nj|ψj(x)|2, (12)

and nj is the two-dimensional density of the jth electron sub-band state.
Since the system is charge-neutral, the integrated electron density equals the integrated ionized donor

concentration, so that ∫
ND(x)dx =

∫
n(x)dx

=

∫ ∑
j

nj|ψj(x)|2dx =
∑

j

nj. (13)

Furthermore, if the system is assumed to be at zero absolute temperature, then electrons will occupy states
up to the Fermi energy EF, so that

nj = (EF − Ej)D, (14)

for eigenvalues Ej < EF, where D = m∗
e

π�2 is the density of states of a two-dimensional sub-band, accounting
for spin. It follows that

EF =

∫
ND(x)dx −

∑NF
j=1EjD

NFD
. (15)

The only remaining unknown is NF, the index of the highest occupied eigenstate which may be found
iteratively.

Note that in order to determine n(x), an approximation of the eigenstates ψj and eigenvalues Ej of
equation (9) must already be known. Thus, in the first iteration, equation (9) can be solved by substituting
Vtot(x) = Vos to find the first approximation of the eigenstates and eigenvalues.

Once n(x) has been determined, equation (11) can be solved, and the value of Φ(x) can be substituted
into equation (10) to find the next approximation of Vtot, which is then substituted into equation (9) to find
new approximations of ψj and Ej. A new electron density n(x) can then be evaluated and substituted back
into equation (11), and the process is repeated until convergence to within a specified relative error is
reached. To ensure convergence, at the nth iteration, the new total potential Vtot(n; x) is taken to be a linear
combination of the potential calculated by the above procedure Vtot(x) and the total potential from the
prior iteration Vtot(n − 1; x), so that Vtot(n; x) = αVtot(x) + (1 − α)Vtot(n − 1; x), where the relaxation
constant α has a value between 0 and 1 [15].

3.2. Finite temperature
At finite absolute temperature T, the two-dimensional density of the jth electron sub-band state is

nj =

∫ ∞

Ej

Df (E)dE, (16)

where f (E) = 1
e(E−μ)/kBT+1

is the Fermi–Dirac distribution describing occupation of n electron states in

thermal equilibrium.
The chemical potential μ must be determined to evaluate nj. Note that while D is the density of states for

a single sub-band, the presence of multiple sub-bands means that the total density of states accounting for
all sub-bands is

D∗(E) =
∑

j

DΘ(E − Ej), (17)

where Θ(E) is the unit step function, and Ej is the lowest eigenenergy of the jth sub-band.
From this, it follows that the total two-dimensional electron density is

n2D =

∫
n(x)dx =

∫
D∗(E)f (E)dE, (18)

3
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recalling that, due to charge neutrality of the medium, n2D =
∫

n(x)dx =
∫

ND(x)dx, where ND(x) is the
ionized donor density. The only unknown in equation (18) is the chemical potential μ.

Iteration is used to solve for μ. The upper bound for μ is set to μmax = n2D
π�

2

m∗
e

, where μmax is what the
Fermi energy would be if only a single sub-band were occupied. For numerical calculations, the lower
bound is set to μmin = −kBT ln

(
Nmax kBT/EF

)
, where Nmax is the index of the highest energy eigenstate

included in the calculation. The index Nmax should be greater than the index of the highest energy
eigenstate that is not negligibly occupied.

An initial value μ′ = (μmin + μmax)/2 is used. If n2D �
∫

D ∗ (E)f(E)dE, then μ′ � μ, and the upper
bound is then updated to μmax = μ′. Otherwise, μ′ < μ, and the lower bound is updated to μmin = μ′.
Another iteration can then be made with an updated value of μ′ = (μmin + μmax)/2, and this continues
until n2D =

∫
D ∗ (E)f(E)dE to within a desired relative error.

The value of μ calculated this way may then be used to calculate the two-dimensional densities nj using
equation (16), from which the electron density n(x) is then evaluated using equation (12). Once the
electron density n(x) has been determined, the calculation proceeds in the same manner as in the zero
temperature case to find new approximations of the total potential Vtot, the eigenfunctions ψj and the
eigenenergies Ej. The chemical potential μ must then be reevaluated, and this process is repeated until
convergence to within a specified relative error is reached.

4. On-site potentials that yield target total potentials

Given a system with non-interacting electrons of effective mass m∗
e , ionized donor density ND(x),

temperature T, and a target total potential Vtarget(x), it is possible to determine an on-site potential Vos(x)
that yields, upon solution of the Shrödinger–Poisson equations, a total potential Vtot(x) = Vtarget(x).

If a total potential Vtot(x) = Vtarget(x) is postulated, then the eigenstates ψj(x) and eigenenergies Ej can
be determined by solving the Schrödinger equation

− �
2

2m∗
e

d2

dx2
ψj(x) + Vtarget(x)ψj(x) = Ejψj(x) (19)

without iterating for self-consistency. The chemical potential μ can then be found based on the ionized
donor density ND(x), the temperature T and the eigenenergies Ej, as described in subsection 3.2. The
two-dimensional density nj of the electron sub-band states can then be evaluated using equation (16). The
total electron density n(x) is then determined by equation (12), and the Poisson equation (equation (11)) is
solved to find the electric potential Φ(x) due to the ionized donors and conduction band electrons. It
follows from equation (10) that the on-site potential is

Vos(x) = Vtarget(x) + eΦ(x). (20)

This on-site potential, when substituted into the Schrödinger–Poisson equations and solved
self-consistently as described in section 3, will yield the desired total potential Vtot(x) = Vtarget(x) and
eigenstates ψj(x) with eigenenergies Ej.

To see that this must be the case, suppose that the eigenstates ψj(x) and eigenenergies Ej of the target
total potential Vtarget(x) are used as the initial condition to solve the Schrödinger–Poisson equations,
together with the on-site potential Vos(x) = Vtarget(x) + eΦ(x). Then, following the process described above,
the same chemical potential μ, and thus the same electric potential Φ(x) will be found at the first iteration,
so that the total potential, according to equation (10), is

Vtot(x) = −eΦ+ Vos(x) = Vtarget(x). (21)

The total potential would thus converge to the desired potential at the first iteration.
In practice, it is not necessary to use ψj(x) and Ej as the initial conditions. The process described in

section 3 can be used unaltered once Vos(x) has been evaluated, and the total potential Vtot(x) will
asymptotically converge to the desired potential Vtarget(x) as the number of iterations increases (as has been
verified numerically).

5. Supersymmetry with self-consistent Schrödinger–Poisson equations

It may seem that supersymmetry is incompatible with self-consistent solutions of the Schrödinger equation,
due to the fact that the eigenstates and eigenenergies of a system with given on-site potential Vos(x) and
nonzero ionized donor density ND(x) solved using the Schrödinger–Poisson equations will differ from the

4
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eigenstates and eigenenergies that would be found for a system with the same on-site potential Vos(x) solved
using the non-self-consistent Schrödinger equation. Thus, if partner on-site potentials V (+)

os (x) and V (−)
os (x)

were to be evaluated using the method described in section 2 without accounting for self-consistency, the
eigenvalues E(+)

n and E(−)
n found upon substituting those on-site potentials into the Schrödinger-Poisson

equations with nonzero ionized donor density ND(x) would not be equal (i.e. the systems would not be
isospectral).

However, supersymmetry and the Schrödinger-Poisson equations can be reconciled by noting that it is
the final total potential Vtot(x), found upon convergence of the solutions of the Schrödinger-Poisson
equations, that determines the eigenstates and eigenenergies of the system. Once this total potential is
known, it can be substituted into the Schrödinger equation, and the partner total potentials V (+)

tot (x) and
V (−)

tot (x) can be found by using the method described in section 2. It then remains to find the on-site
potentials V (+)

os (x) and V (−)
os (x) that generate these supersymmetric partner total potentials, using the

method described in section 4.
Given a semiconductor medium with on-site potential Vos(x), ionized donor density ND(x), temperature

T, permittivity ε, and effective electron mass m∗
e , let ψn and En be solutions of the self-consistent

Schrödinger-Poisson equations (equation (9)), and let Vtot(x) = Vc + Vos be the total potential experienced
by these solutions, where Vc = −eΦ. Since Vtot(x) is the final total potential, it can be used to calculate
supersymmetric partner total potentials V (+)

tot (x) and V (−)
tot (x), with eigenfunctions and eigenvalues ψ(+)

n ,
E(+)

n , ψ(−)
n , and E(−)

n , using the method shown in section 2. These total potentials are isospectral.
To find the on-site potentials V (+)

os (x) and V (−)
os (x) that generate V (+)

tot (x) and V (−)
tot (x), the method

described in section 4 is applied, with V (+)
tot (x) and V (−)

tot (x) as the target total potentials. It is assumed that
the two systems have the same ionized donor density ND(x), temperature T, permittivity ε, and effective
electron mass m∗

e . The chemical potentials μ(+) and μ(−) are evaluated by the method described in
subsection 3.2, and are dependent on the ionized donor density ND(x), the temperature T, and the
eigenvalues E(+)

n and E(−)
n . The two-dimensional densities n(+)

j and n(−)
j are then evaluated using

equation (16), from which it follows that the total electron densities are

n(+)(x) =
∑

j

n(+)
j |ψ(+)

j (x)|2 (22)

n(−)(x) =
∑

j

n(−)
j |ψ(−)

j (x)|2. (23)

Substituting the electron densities n(+)(x) and n(−)(x) and the ionized donor density ND(x) into
equation (11) (the Poisson equation) and solving yields the electric potentials Φ(+) and Φ(−) generated by
the ionized donors and the conduction band electrons in a system of total potential V (+)

tot (x) and V (−)
tot (x),

respectively. Finally, applying equation (20), it follows that the on-site potentials that produce the total
potentials V (+)

tot (x) and V (−)
tot (x) are

V (+)
os (x) = V (+)

tot + eΦ(+) (24)

V (−)
os (x) = V (−)

tot + eΦ(−). (25)

Thus, ψ(+)
n , E(+)

n and ψ(−)
n , E(−)

n are solutions of the self-consistent Schrödinger equation for media with
ionized donor concentration ND(x) and on-site potentials V (+)

os (x) and V (−)
os (x), respectively. Furthermore,

V (+)
os (x) and V (−)

os (x) generate the total potentials V (+)
tot (x) and V (−)

tot (x) that were evaluated to be
supersymmetric partner potentials. Thus, for the given ionized donor density ND(x), temperature T,
permittivity ε, and effective electron mass m∗

e , V (+)
os (x) and V (−)

os (x) are isospectral on-site potentials, since
E(+)

n = E(−)
n , except for the case where index n = 0.

When evaluating the electrostatic potential Φ, the eigenfunctions ψn are used to find the total electron
density n(x). In the zero temperature case, only a finite number of eigenstates below the Fermi energy are
occupied, and it is possible to include all of them in the calculation. However, for finite temperature, an
infinite number of eigenstates have non-zero occupation probability. Due to Fermi–Dirac statistics,
sub-band eigenstates with higher eigenenergies have lower electron occupation probability. Thus, in
practice, only eigenstates with eigenenergies up to a finite energy are included in the numerical calculation.
This introduces error to the total potential Vtot, and thus to the final eigenfunctions ψn and the operator Â
used to evaluate the partner potentials. The error can be made arbitrarily small by increasing the number of
eigenstates included in the calculation.

5
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6. Self-consistent solutions of the rectangular potential well with infinite barrier
energy and its partner potential

In this section, basic examples of supersymmetric quantum mechanics and self-consistent solutions of the
Schrödinger-Poisson equations are discussed. In doing so, examples of the method discussed in section 5, in
which supersymmetric partner total potentials are calculated, will be shown.

6.1. The rectangular potential well with infinite barrier energy and its partner potential
Consider single-electron states in a rectangular potential well with infinite barrier energy

V(x) =

{
0 0 < x < L

∞ x � L, x � 0
, (26)

where L is the thickness of the well and defines the domain of interest. Suppose that the well contains no
ionized donors, and consider a single electron in the conduction band. In this case, the self-consistent
model described in section 3 need not be used to solve for the eigenstates and eigenvalues. The method
described in section 2 may be used directly to calculate the partner potentials V(−)(x) and V(+)(x).

The ground state of V(x) is ψ0 =
√

2/L sin(πx/L), and has energy E0 =
π2

�
2

2m∗
e L2 (where m∗

e is the effective
electron mass), so that

V (−)(x) =

{−E0 0 < x < L

∞ x � L, x � 0
(27)

and, applying equation (5) and simplifying [17, 18],

V (+)(x) =

⎧⎨
⎩−E0 +

2E0

sin2
(
πx/L

) 0 < x < L

∞ x � L, x � 0.
(28)

From equation (8), it follows that

ψ(+)
n =

√
2/L√

(n + 1)2 − 1

[
(n + 1) cos

(
(n + 1)πx

L

)
− cot

(πx

L

)
sin

(
(n + 1)πx

L

)]
, (29)

where n = 1, 2, 3, . . . The two lowest-energy eigenstates of H(+) are

ψ(+)
1 =

√
8

3L
sin2

(πx

L

)
(30)

and

ψ(+)
2 =

4√
L

cos
(πx

L

)
sin2

(πx

L

)
. (31)

Suppose that the rectangular potential well and its partner potential are made of AlxGa1−xAs, where the
value of the potential in a given region is controlled by the alloy composition ratio of Al to Ga, and suppose
furthermore that there are no ionized donors. In this case, the effective electron mass is m∗

e = 0.07 × m0,
where m0 is the bare electron mass, and the low-frequency relative permittivity is εr0 = 13.2. Figure 1 shows
V(−)(x) and V(+)(x) (solid and dashed curves, respectively) for a well of thickness L = 20 nm. The ground
state energy, E0, has been added to V(−)(x) and V(+)(x) so that V(−)(x) = V(x). Figure 2 shows the ground
state ψ(−)

0 and first excited state ψ(−)
1 in the presence of V(−)(x), and the ground state ψ(+)

1 in the presence of
V(+)(x). The greater curvature of the ground state ψ(+)

1 gives rise to the higher energy of the state, which is
equal to that of the first excited state ψ(−)

1 .

6.2. Supersymmetry with the rectangular potential well with infinite barrier energy as the total
potential
Consider now the case where the material contains ionized donors, with uniform ionized donor density
ND = 5 × 1017 cm−3 for 0 < x < L and electrons maintained at temperature T = 0 K, while the rest of the
parameters remain the same. Suppose furthermore that we wish the total potentials to be equal to the
rectangular potential well with infinite barrier energy and its supersymmetric partner potential, as shown in
figure 1, so that V (+)

tot = V (+) and V (−)
tot = V (−). In this case, the methods described in sections 4 and 5 must

be used due to the presence of ionized donors.
The eigenstates ψj and eigenvalues Ej of these total potentials can be evaluated by substituting

V (+)
tot = V (+) and V (−)

tot = V (−) into the non-self-consistent Schrödinger equation, and will therefore be the

6
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Figure 1. A rectangular potential well with infinite barrier energy V(−)(x) (solid curve) and its partner potential V(+)(x) (dashed
curve) as a function of x. Parameters are m∗

e = 0.07 × m0, ND = 0, and L = 20 nm.

Figure 2. Ground states of the of the rectangular potential well with infinite barrier energy V(−)(x) (solid curve) and its partner
potential V(+)(x) (dashed curve) as a function of x. Their eigenenergies are E(−)

0 = 13.4 meV and E(−)
1 = E(+)

1 = 53.7 meV.
Parameters are m∗

e = 0.07 × m0, ND = 0, and L = 20 nm.

same as those shown in figure 2. The electric potentials Φ(+) and Φ(−) are evaluated based on the
eigenstates, eigenvalues, and system parameters, and the on-site potentials generating the desired total
potentials will be

V (+)
os (x) = V (+)

tot + eΦ(+) (32)

V (−)
os (x) = V (−)

tot + eΦ(−). (33)

Figure 3 shows the on-site potentials V (−)
os (x) and V (+)

os (x) (solid dashed lines), the target total potentials
V (−)

target(x) = V (−)(x) and V (+)
target(x) = V (+)(x) (thin solid blue lines) and the total potentials numerically

evaluated from the on-site potentials V (−)
tot (x) and V (+)

tot (x) (dashed red lines). The total potentials, when
numerically evaluated from the on-site potentials by the self-consistent method described in section 3,
converge to the desired target potentials, as can be seen in the figure. Consequently, the eigenstates are the
same as those shown in figure 2, and their eigenenergies are also the same.

6.3. Supersymmetry with the rectangular potential well with infinite barrier energy as the on-site
potential
Suppose that, instead of the total potential Vtot being a rectangular potential well with infinite barrier
energy, it is the on-site potential Vos that is a rectangular potential well with infinite barrier energy. Suppose

7
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Figure 3. The total potential V (−)
tot (x) equal to the infinite rectangular potential well, and the on-site potential V (−)

os (x) that
generates it (a), as well as its partner total potential V (+)

tot (x), and the on-site potential V (+)
os (x) that generates it (b). The total

potentials V (−)
tot (x) and V (+)

tot (x) are the supersymmetric partner potentials shown in figure 1, and the eigenstates are given in
figure 2. Parameters are m∗

e = 0.07 × m0, ND = 5 × 1017 cm−3, εr0 = 13.2, T = 0 K, and L = 20 nm.

Figure 4. The on-site potential V (−)
os (x) equal to the infinite rectangular potential well, and the total potential V (−)

tot (x) that it
generates (a), as well as its partner on-site potential V (+)

os (x), and the total potential V (+)
tot (x) that it generates (b). The total

potentials V (−)
tot (x) and V (+)

tot (x) are supersymmetric partner potentials. Parameters are m∗
e = 0.07 × m0, ND = 5 × 1017 cm−3, εr0

= 13.2, T = 0 K, and L = 20 nm.

furthermore that, as in subsection 6.2, the ionized donor density is ND = 5 × 1017 cm−3, and the electrons
are maintained at temperature T = 0 K. In this case, the total potential Vtot would not be a rectangular
potential well, due to the contribution of the electric potential produced by the ionized donors and
conduction band electrons. Nevertheless, using the method described in section 5, it is possible to evaluate
supersymmetric partner total potentials V (−)

tot and V (+)
tot using the total potential Vtot generated by Vos, from

which partner on-site potentials V (−)
os and V (+)

os that generate these total potentials can be evaluated.
Notably, because V (−)

tot = Vtot − E0, it follows that V (−)
os = Vos − E0, so that V (−)

os will be a rectangular
potential well with infinite barrier energy.

Figure 4 shows the partner on-site potentials V (−)
os and V (+)

os (solid black curves) and the supersymmetric
partner total potentials V (−)

tot and V (+)
tot (dashed red curves) evaluated from the on-site potential

Vos(x) = V(x), where V(x) is the rectangular potential well with infinite barrier energy defined in
equation (26), with thickness L = 20 nm. Note the bulge in the total potentials near the center of the well,
where the electron density is greatest.

6.4. Partner on-site potentials are a function of ionized donor density
While it is possible to speak of ‘partner on-site potentials’ due to the fact that they generate supersymmetric
partner total potentials, it is important to note that this is only possible if other system parameters have the
required values. The effective electron mass, the permittivity, and, notably, the temperature and the ionized
donor density, must all have the particular values used to evaluate the partner on-site potentials in order to
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Figure 5. Eigenenergies calculated as a function of ionized donor density ND in a rectangular potential well with infinite barrier
energy V (−)

os (solid curves) and its partner on-site potential V (+)
os (dashed curves) using the Schrödinger and Poisson equations.

The on-site potentials are those shown in figure 4, and are isospectral if ND = 5 × 1017 cm−3. Parameters are m∗
e = 0.07 × m0,

εr0 = 13.2, T = 0 K, L = 20 nm.

yield supersymmetric partner total potentials. If these parameters differ from the required values, then
isospectrality will be broken.

Consider two systems with the on-site potentials V (+)
os and V (−)

os evaluated in subsection 6.3, as shown in
figure 4, with equal but unknown constant ionized donor density ND, and otherwise with the same system
parameters assumed in subsection 6.3 (effective mass m∗

e = 0.07 × m0, relative permittivity εr0 = 13.2,
temperature T = 0 K, and total thickness L = 20 nm). Let Ĥ(+) and Ĥ(−) be the Hamiltonians of an
electron in the systems with on-site potentials V (+)

os and V (−)
os , respectively. If ND = 5 × 1017 cm−3, then the

systems will be identical to those discussed in subsection 6.3, and Ĥ(+) and Ĥ(−) will be isospectral when
solved self-consistently, except for the ground state of Ĥ(−), which has no counterpart. On the other hand, if
ND � 5 × 1017 cm−3 or ND 	 5 × 1017 cm−3, then upon solving the Schrödinger-Poisson equations, the
total potentials will differ substantially from those shown in figure 4, and consequently the eigenstates and
eigenenergies will also differ significantly.

Figure 5 shows the eigenenergies E(+)
j of Ĥ(+) (dashed curves) and E(−)

j of Ĥ(−) (solid curves) as a
function of the ionized donor density ND. As expected, the eigenenergies are equal only at
ND = 5 × 1017 cm−3. The eigenenergies increase as a function of ionized donor density ND. This is because
the presence of more electrons in the conduction band increases the potential near the center of the well.
This effect is reduced at higher temperatures because occupation of higher energy states in the conduction
band causes more uniform electron distribution and hence a less pronounced increase in potential near the
center of the well.

Because the eigenfunctions of Ĥ(+) differ from the eigenfunctions of Ĥ(−), the impact of the
self-consistent solution on the eigenvalues also differs. In particular, the eigenfunctions of Ĥ(+) are more
localized near the center of the well, meaning that they experience a larger electric potential near the center
of the well in comparison to that experienced by the eigenfunctions of Ĥ(−). Once again, the magnitude of
this effect is reduced at higher temperatures. The sensitivity to separation of the eigenergies of Ĥ(+) and
Ĥ(−) with increasing ionized donor density ND can be enhanced by increasing L.

7. Distinguishing partner potentials

In the following, supersymmetric partner total potentials are evaluated in the presence of ionized donors
using the method discussed in section 5. Time-independent partner potentials have Hamiltonians that are
isospectral (with the possible exception of the ground state). However, their eigenfunctions are not identical
in the general case. The question arises as to whether it is possible to distinguish partner potentials without
having to resort to the direct measurement of potentials.

One way to do so is to subject the potentials to a perturbation (such as an applied electric field) which
breaks symmetry and introduces a shift in energy eigenvalues. If this shift differs between one partner
potential and the other, the energy eigenvalues will no longer be identical. This provides a measure by
which to spectrally distinguish between systems.

9
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Figure 6. Eigenenergies as a function of φa = |E|L in a rectangular potential well with infinite barrier energy. Parameters are
m∗

e = 0.07 × m0, ND = 5 × 1017 cm−3, εr0 = 13.2, T = 0 K, and L = 20 nm.

7.1. A rectangular potential well with infinite barrier energy
As a first example, consider a rectangular potential well with infinite barrier energy containing ionized
donors, with onsite potential Vos given by equation (26). Let V (−,0)

os and V (+,0)
os be the corresponding

unperturbed onsite potentials calculated using the self-consistent method described in section 5 to account
for the effect of the presence of ionized donors, so that the corresponding total potentials V (−,0)

tot and V (+,0)
tot

are supersymmetric partner potentials. Suppose that the potential well and its partner potential are
perturbed by an applied voltage φa that is zero-centered, so that the voltage applied on the left of the well is
+φa/2 and the voltage applied on the right is −φa/2. Such a bias voltage generates a constant electric field E
in the x direction, so that |E| = φa

L , and the onsite potentials become

V (−)
os = V (−,0)

os + δV(x) (34)

V (+)
os = V (+,0)

os + δV(x), (35)

where
δV(x) = e|E|(x − L/2). (36)

Suppose that the ionized donor density is ND = 5 × 1017 cm−3. Figure 6 shows the energy eigenvalues of
Ĥ(−) and Ĥ(+) as a function of φa = |E|L for the case where L = 20 nm. As φa increases, the eigenvalues of
Ĥ(−) and Ĥ(+), which are identical when φa = 0, gradually diverge.

7.2. Potential step in a potential well with infinite barrier energy
Suppose a potential step is added to the rectangular well with infinite barrier energy, so that the
unperturbed on-site potential becomes

Vos(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Vstep 0 < x < wstep

0 wstep < x < L

∞ x � L, x � 0

, (37)

where wstep is the thickness of the potential step and Vstep is the potential energy of the step. Suppose
furthermore that the step and well are made of AlxGa1−xAs, so that m∗

e = 0.07 × m0 and εr = 13.2. Let the
carrier density be ND = 5 × 1017 cm−3, and let V (−,0)

os (x) and V (+,0)
os (x) be the partner potentials calculated

from Vos(x) by the method described in section 5.
If V (−,0)

os and V (+,0)
os are perturbed by an applied voltage φa that is zero-centered, so that the voltage

applied on the left of the well is +φa/2 and the voltage applied on the right is −φa/2, then such a bias
voltage generates a constant electric field E in the x direction, so that |E| = φa/L, and the potentials are
given by equations (34) and (35), where δV(x) is given by equation (36).

Figure 7 shows the eigenvalues of Ĥ(−) and Ĥ(+) as a function of φa = |E|L for the case where
L = 20 nm. In the domain, the thickness of the potential step is wstep = 15.2 nm and the step energy is
Vstep = 0.35 eV.
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Figure 7. Eigenenergies as a function of φa = |E|L for a rectangular well with infinite barrier energy containing a potential step
(solid curves) and for its partner potential (dashed curves). The rectangular well has thickness L = 20 nm, and contains a
potential step of thickness wstep = 15.2 nm and potential Vstep = 0.35 eV. Other parameters are m∗

e = 0.07 × m0,
ND = 5 × 1017 cm−3, εr0 = 13.2, and temperature T = 0 K.

Figure 8. Potentials (a) V (−)
tot and (b) V (+)

tot as a function of position x for φa = |E|L = 0 (solid curve) and φa = |E|L = 0.42 V
(dashed curve). Parameters are: domain thickness L = 20 nm, m∗

e = 0.07 × m0, ND = 5 × 1017 cm−3, εr0 = 13.2, T = 0 K,
wstep = 15.2 nm, and Vstep = 0.35 eV.

For these particular dimensions of the well and the potential step, the eigenenergy of the ground state of
Ĥ(−) is less than the potential of the barrier, meaning that, in the absence of a perturbation, it is bound in
the well created by the potential step. When the system is perturbed by an external electric field, the energy
of the ground state initially increases, as the potential of the floor of the finite well rises with respect to the
rest of the potential. Eventually, with increasing externally applied electric field, the ground state becomes
no longer localized near the well. The peak in electron density then switches to the other side of the
domain. The total potentials V (−)

tot and V (+)
tot , without perturbation, and with perturbation at the switching

point, are shown in figure 8. The wave functions near this switching point are shown in figure 9.
Note that, as a function of φa, the difference between E(−)

0 and E(−)
1 decreases until reaching a minimum

at the switching point (φa = 0.42 V), then begins to increase. Meanwhile, E(+)
1 continues to decrease as a

function of φa because of the absence of a ψ(+)
0 state. The result is a crossing point between E(−)

1 and E(+)
1 at

which these eigenvalues diverge more quickly as a function of φa than they do in the case of the rectangular
potential well with infinite barrier energy (compare figures 6 and 7).

For a given pair of supersymmetric partner potentials, symmetry can also be broken by a change of
temperature. The sensitivity to this symmetry breaking with increasing temperature can be enhanced by
increasing L. Figure 10 shows eigenenergies calculated self-consistently as a function of temperature in a
rectangular well containing a potential step (solid curves) and its partner potential (dashed curves).
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Figure 9. Probability distributions |ψ(−)
0 (x)|2 as a function of position x in the vicinity of the switching point at which the

perturbing electric field causes the wave function to move from the right to the left of the domain (0 < x < L). Parameters are
m∗

e = 0.07 × m0, ND = 5 × 1017 cm−3, εr0 = 13.2, T = 0 K, L = 20 nm, wstep = 15.2 nm, and Vstep = 0.35 eV.

Figure 10. Eigenenergies as a function of temperature in a rectangular well with infinite barrier energy containing a potential
step (solid curves) and its partner potential (dashed curves). The partner potentials are calculated using the method described in
section 5 (taking into account self-consistency) at T = 0 K. Parameters are m∗

e = 0.07 × m0, εr0 = 13.2, and
ND = 5 × 1017 cm−3, L = 30 nm, wstep = 22.8 nm, Vstep = 0.2 eV, and φa = 0.

7.3. Maximizing the rate of separation of supersymmetric partners
Given two supersymmetric Hamiltonians Ĥ(+) and Ĥ(−) as defined in section 2, the ground state of Ĥ(+)

will have the same eigenenergy as the first excited state of Ĥ(−). Subsections 7.1 and 7.2 show how a
perturbation may be used to distinguish the partner potentials by exploiting the fact that the eigenfunctions
corresponding to the isospectral states are not identical. For small perturbations, the rate of separation is
slow. However, once the perturbations are large enough to cause the wave functions to switch from one side
of the domain to the other, rapid increases in the difference in eigenenergies between formerly isospectral
states can occur.

This spatial switching of the wave functions leads to the change in slope observed in figure 7. The
change in slope leads to the crossing of the curves corresponding to the eigenvalues of the ground state of
Ĥ(+) and the first excited state of Ĥ(−). It is near this point of crossing that E(+)

1 and E(−)
1 diverge most

rapidly. The question then arises as to whether the parameters of the potential step may be adjusted to
maximize this rate of separation.

Figure 11 shows the rate of change of the difference between the eigenenergy of the ground state of Ĥ(+)

and the first excited state of Ĥ(−) with respect to the bias voltage (
d(ΔE(−,+)

1,1 )

dφa
=

d(E(−)
1 −E(+)

1 )
dφa

) plotted as a
function of step thickness wstep and the potential of the step Vstep. The effective electron mass is
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Figure 11. The maximum rate of change of the difference between E(+)
1 and E(−)

1 with respect to the bias voltage (
d(E(−)

1 −E(+)
1 )

dφa
)

plotted as a function of step thickness wstep and the potential energy of the step Vstep. The bias voltage φa = |E|L ranges from 0 to
0.35 V. The point where the maximum slope is achieved is indicated by the asterisk, and corresponds to Vstep = 0.35 eV and
wstep = 25.95 nm. Other parameters are m∗

e = 0.07 × m0, ND = 0, εr0 = 13.2, T = 0 K, and L = 30 nm. Below the dashed line,
no bound states exist in the potential well created by the potential step.

m∗
e = 0.07 × m0 and domain thickness L = 30 nm. The point where the maximum slope of 0.662 eV V−1 is

achieved is indicated by the asterisk, and corresponds to Vstep = 0.35 eV and wstep = 25.95 nm. To generate
this plot, the potential energy drop across the domain caused by the applied electric field is varied from

0 eV to 0.35 eV. The maximum of the derivative
d(ΔE(−,+)

1,1 )

dVfield
is then evaluated.

When the energy of an eigenstate is equal to the potential of the step, eigenfunctions of Ĥ(−) have the
form

ψ(−)(x) =

{
Ax 0 < x < wstep

B sin [k(x − L)] wstep < x < L,
(38)

from which it follows, after applying the boundary conditions at x = wstep, that A = Bk cos
[
k(wstep − L)

]
,

where B is then a normalization constant, and

kwstep = tan
[
k(wstep − L)

]
. (39)

The white dashed curve in figure 11 indicates the values of wstep and L for which a solution for k in
equation (39) exists and is the ground state of the system. Thus, for the region below the dashed curve, no
states exist that are bound within the well created by the potential step, while for the region above the
dashed curve, such a state always exists. The lack of any states bound in the potential well of thickness
L − wstep in the region below the dashed curve explains the low maximum rates of separation in that region.

It can be seen in figure 11 that the slope increases with increasing step potential Vstep. The slope is
maximized when the potential step occupies most of the well, leaving a relatively narrow well of thickness
L − wstep within the domain of thickness L. The secondary region with high rates of separation seen in
figure 11 is caused by the first excited state also being bound in the well created by the potential step. While
the maximum bias voltage of 0.35 V is not sufficient to cause the expectation value of position of the
ground state to shift to the other side of the domain in this region, it is sufficient to cause the first excited
state to shift due to its higher energy.

8. Distinguishing strictly isospectral potentials

One possible objection to the results presented in section 7 is that the partner Hamiltonians are not strictly
isospectral, since there is no eigenstate of Ĥ(+) with the same eigenenergy as the ground state of Ĥ(−). It
therefore remains to be shown that the substantially different behavior of the partner systems when subject
to perturbation is not merely a consequence of the absence of a ψ(+)

0 state. One way of demonstrating this is
to show that similar behavior can be observed for self-consistent solutions to the Schrödinger-Poisson
equations in strictly isospectral potentials when they are subject to perturbation.

The ability to distinguish strictly isospectral potentials by perturbation relies partly on the fact that
subjecting the potentials to the same perturbation will affect the localization of the wavefunctions in each
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potential differently. While previous research has explored how the localization of wavefunctions in strictly
isospectral potentials is affected by the parameters of the potentials [19], which do not affect isospectrality,
in this case the change in localization is due to perturbation, which breaks isospectrality.

8.1. Strictly isospectral potentials
For any potential V(x) with N bound eigenstates, there is an N-parameter family of strictly isospectral
potentials V(λ1,λ2, . . . ,λN; x) with the same eigenenergies as V(x), where λ1,λ2, . . . ,λN are real numbers
[3, 5]. In the simplest case, any potential with one or more bound states has a one-parameter family of
isospectral potentials V(λ; x) [4]. In the following, only this one-parameter case is studied.

Consider a potential V(x) with ground state ψ0, ground state energy E0, and partner potentials V(−)(x)
and V(+)(x) calculated from V(x) as shown in section 2, so that

V (−)(x) = W2(x) − �√
2m

W
′
(x) (40)

V (+)(x) = W2(x) +
�√
2m

W
′
(x), (41)

where W(x) = − �√
2m0

ψ
′
0

ψ0
. Let W̃(x) by any superpotential that satisfies the equation

V (+)(x) = W̃2(x) + �√
2m

W̃
′
(x), and let 1

y(x) = W̃ − W . It follows that

V (+)(x) = W2(x) +
�√
2m

W
′
(x) (42)

=
˜

W2(x) +
�√
2m

˜
W

′
(x) (43)

=

(
W +

1

y

)2

+
�√
2m

d

dx

(
W +

1

y

)
, (44)

which, upon simplification, is the differential equation

y
′
=

√
2m

�

(
2Wy + 1

)
. (45)

Solving this equation yields

y =

√
2m0

�

1

ψ2
0

[∫ x

0
ψ2

0(x
′
)dx

′
+ λ

]
. (46)

It follows that

W̃(λ; x) = W +
1

y
=

�√
2m0

[
ψ2

0

I(x) + λ
− ψ

′
0

ψ0

]
, (47)

where I(x) =
∫ x

0 ψ
2
0(x

′
)dx

′
. The potential

Ṽ (−)(x) = W̃2(x) − �√
2m

W̃
′
(x) (48)

is then a supersymmetric partner of V(+)(x), implying that V(+)(x) and Ṽ (−)(x) are isospectral except for

the ground state energy Ẽ(−)
0 . Substituting W̃ = − �√

2m

ψ̃
′
0

ψ̃0
and W(x) = − �√

2m0

ψ
′
0

ψ0
into equation (47), it

follows that the ground state of Ṽ (−)(x) is [4]

ψ̃0(λ; x) =
Aψ0

I(x) + λ
, (49)

where A is the normalization constant. Furthermore, its eigenenergy is Ẽ(−)
0 = E(−)

0 = 0. Therefore, Ṽ (−)(x)
and V(−)(x) are strictly isospectral (i.e. they share all eigenvalues).

A method analogous to that described in section 5 may be used to calculate strictly isospectral potentials
when solving the Schrödinger-Poisson equations self-consistently.

8.2. Perturbing strictly isospectral potentials
Figure 12 shows the total potential V (−)

tot (x) for a rectangular potential well of thickness L = 20 nm with
infinite barrier energy containing a potential step of thickness wstep = 15.2 nm and potential energy
Vstep = 0.35 eV (solid curves), together with the strictly isospectral potentials (dashed curves)
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Figure 12. The total potential of a rectangular potential well with infinite barrier energy containing a potential step V (−)
tot (x)

(solid curve) and for a member of the family of one parameter potentials strictly isospectral to it (dashed curves) with (a)
parameter λ = 0.1 and (b) λ = −1.1. The rectangular well has thickness L = 20 nm, and contains a potential step of thickness
wstep = 15.2 nm and potential energy Vstep = 0.35 eV. Other parameters are m∗

e = 0.07 × m0, ND = 5 × 1017 cm−3, εr0 = 13.2,
and T = 0 K.

Figure 13. Eigenenergies as a function of φa = |E|L for a rectangular well with infinite barrier energy containing a potential step
(solid curves) and for a member of the family of one parameter potentials strictly isospectral to it (dashed curves) with (a)
parameter λ = 0.1 and (b) λ = −1.1. The rectangular well has thickness L = 20 nm, and contains a potential step of thickness
wstep = 15.2 nm and potential Vstep = 0.35 eV. Other parameters are m∗

e = 0.07 × m0, ND = 5 × 1017 cm−3, εr0 = 13.2, and
T = 0 K.

Ṽ (−)
tot (λ = 0.1; x) and Ṽ (−)

tot (λ = −1.1; x). As in 7.2, the step and well are made of AlxGa1−xAs, so that
m∗

e = 0.07 × m0 and εr = 13.2, and the carrier density is ND = 5 × 1017 cm−3.
Figure 13 shows the eigenenergies of these potentials when perturbed by an applied voltage φa = |E|L,

where φa is zero-centered, as described in 7.2. Figure 13(a) shows the eigenenergies for V(−)(x) (solid lines)
and Ṽ (−)(λ = 0.1; x) (dashed lines) while figure 13(a) shows the eigenenergies for V(−)(x) and
Ṽ (−)(λ = −1.1; x). Similar to the results shown in figure 7, the energies of the first excited states of V(−)(x)
and Ṽ (−) separate most quickly after the ground state wave function of V(−)(x) (figure 13(a)) or Ṽ (−)(λ)
(figure 13(b)) shifts from being localized on the right side of the well to being localized on the left side of
the well due to no longer being confined in the potential well created by the potential step. Because the
ground state wave function shifts in one potential before the other, an energy gap appears between the first
excited states of the two potentials.

Note that the first excited states in figure 13 remain nearly isospectral until the switching point is
reached. This contrasts with the gradual separation seen in figure 7 for the supersymmetric partner
potentials. Unlike in the case of supersymmetric partner potentials, the ground states of strictly isospectral
potentials have the same eigenenergy. Furthermore, for the potentials shown in figure 12, only the ground
states are bound in the potential well created by the step potential. Orthogonality between the ground-state
and excited-states forces the spatial distribution of both first excited-state probabilities to occur in the
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potential step region. Since the potentials are similar in this region, the wave functions are also similar, and
are thus similarly affected by small perturbations. In this way it is possible to minimize sensitivity to
excited-state energy eigenvalue separation in the presence of a perturbation.

9. Discussion

The results presented show the existence of self-consistent solutions to the Schrödinger and Poisson
equations for isospectral Hamiltonians that include many identical non-interacting electrons. For a given
set of parameters there is a total potential that is static so that Vtot = Vtot(x) and it is possible to find the
corresponding isopectral partner on-site potentials using the technique described in section 5.

Our study restricted description of electrons to bound states with motion in one dimension. Models that
include electron motion in three dimensions have not been explored and it remains unknown if
supersymmetry concepts can be applied to such cases. Prior research has shown that the absolute values of
the transmission (and reflection) coefficients of supersymmetric partner optical dielectric structures are
equal [20]. Such matching is also a feature of isospectral electronic systems [4], but it is not known how this
extends to scattering in electronic systems modeled by self-consistent Schrödinger-Poisson equations.

Breaking of supersymmetry has been demonstrated by using control parameters such as perturbation
via an externally applied electric field, change in temperature, or change in electron charge density. The
sensitivity of parameter values used to break supersymmetry and distinguish between initially isospectral
systems can be controlled by design of on-site potential profiles. This is possible because of the interplay
between self-consistent solutions of the Schrödinger and Poisson equations for a given design of on-site
potential profile and the other control parameters of the system.

Insensitivity to energy eigenvalue separation of excited states in the presence of a perturbation can be
achieved in strictly isospectral systems in which the Schrödinger and Poisson equations are calculated
self-consistently. This robustness to perturbation is obtained by exploiting orthogonality between ground
and excited states in the strictly isospectral system.

10. Conclusion

Isospectral Hamiltonians and partner potentials can be found for self-consistent solutions of the
Schrödinger and Poisson equations in systems that include identical non-interacting electrons. Our study of
isospectral bound electron-states in semiconductor quantum wells shows that perturbation by an external
electric field can be used to break symmetry and spectrally distinguish between systems. For a given pair of
partner potentials, symmetry may also be broken by a change of electron density or temperature. Device
structures can be designed to maximize sensitivity to separation of isospectral states between partner states.
By exploiting orthogonality between ground and excited states in a strictly isospectral system it is also
possible to minimize sensitivity to energy eigenvalue separation in the presence of a perturbation.
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