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Quantum Behavior in Mesoscale Lasers

A. F. J. Levi
University of Southern California, USA

Abstract— Describing the operation of mesoscale lasers consisting of several atom or semi-
conductor quantum dot emitters in an optical cavity is a challenge that, if properly addressed,
may contribute to a new generation of efficient, ultra-small, photonic components. In dramatic
contrast to successful continuum mean-field models of conventional macroscopic laser diodes, a
quantum mechanical description of mesoscale lasers predicts steady-state and transient behavior
that is dominated by fluctuations in the photon field and, in the limit of few emitters, the exis-
tence of symmetry-protected long-lived emitter states. Current understanding of these mesoscale
laser phenomena suggests a very promising and challenging field for future study.

1. INTRODUCTION

To increase the number and type of applications for which semiconductor lasers may be used, it is
natural to explore limits to reducing device size. Efficient and very small lasers might be useful for
chip-scale optical interconnects in systems, displays, switches, sources of quantum light, and other
applications. However, developing a realistic model that can simultaneously predict the behavior
of conventional and small (mesoscale) lasers is a challenge as is the development of methods to
control photon fluctuations in these devices.

2. SINGLE-MODE CONTINUUM MEAN-FIELD RATE EQUATIONS

The steady-state and transient average optical field intensity and average emitter excitation of a
conventional macroscopic single-mode laser may be accurately described using continuum mean-
field rate equations. The optical field of a macroscopic laser operating in the large particle number
(thermodynamic) limit transitions from a disordered to an ordered state as the system is driven from
below to above lasing threshold. This is the classical example of a second-order non-equilibrium
phase transition with the optical field as the order parameter [1–6]. Mesoscale lasers are of interest
in part because they must behave differently, if only because no formal non-equilibrium phase
transition exists in a necessarily finite-sized meso-system.

Single-mode mean-field rate equations relating average injection current, Iinj , average light
output, Lout, and average carrier density, n, have been used to predict some trends in device
behavior as laser diode geometry is reduced in size. In particular, the phenomenological fraction
of spontaneous emission, 0 < β ≤ 1, feeding into the laser mode can be used to parameterize laser
diode scaling. To illustrate this, if it is assumed that the laser diode optical cavity may be reduced
in size such that β increases but no other parameters change, Fig. 1 shows predicted (a) Lout− Iinj

and (b) n− Iinj behavior on a log-log plot for the indicated values of β [7].
As may be seen in Fig. 1, the abrupt increase in light output with increasing current that is a

conventional definition of laser threshold, Ith, becomes less well-defined as the device is reduced in
size and β increases. When β = 1 all spontaneous emission feeds into the laser mode and there is
no longer any evidence in the Lout − Iinj characteristic of a definite transition from non-lasing to
lasing. Similarly, carrier pinning above threshold disappears as β approaches unity. If the existence
of a laser threshold implies a second-order nonequilibrium phase transition then, as β approaches
unity, this transition is no longer well-defined in either the Lout − Iinj or n− Iinj behavior.

Other classical signatures of a nonequilibrium phase transition, such as critical slowing, are also
suppressed as β is increased. In the case of critical slowing, a time delay td in the large-signal
transient dynamics exists between the onset of a step change in diode forward current for time
t ≥ 0 from zero current at time t < 0 and laser light output Lout to reach half of the steady-state
value.

Figure 2(a) plots calculated time delay, td, as a function of step current in the range 0 < Istep <
20mA for the indicated values of spontaneous emission factor β. There is an increase in delay
for values of current near threshold current, Ith = 5.7mA. Critical slowing is due to long-lived
fluctuations associated with the existence of a phase transition [8]. Increasing the value of β damps
the critical slowing phenomena and, for a given step increase in injection current, reduces the off-on
time delay, td. However, this does not mean that a laser diode with β ∼ 1 has a faster small-signal

684



2019 PhotonIcs & Electromagnetics Research Symposium — Spring (PIERS — SPRING), Rome, Italy, 17–20 June

(b)

β = 10-4

β = 1

10100

Log10(Iinj ) (mA)

100L
o

g
1
0
(n

) 
(x

 1
0

1
8
 c

m
-3

)

β = 1

β = 10-4

(a)

10100

L
o

g
1
0
(L

o
u
t)

 (
m

W
/f

a
ce

t)

100

10-2

10-4

10-6

102

Log10(Iinj ) (mA)

Ith = 5.7 mA Ith = 5.7 mA

Figure 1. (a) Light emission and (b) carrier density in a Fabry-Perot laser diode for values of spontaneous
emission factor β = 10−4, β = 10−3, β = 10−2, β = 10−1, and β = 1 plotted using logarithmic scales. The
calculation uses typical parameters for an InGaAsP device with emission at 1310 nm wavelength.

on-on modulation response compared to a conventional device with β ¿ 1. This is because as β
becomes large carriers are no longer pinned and so the carrier recombination rate due to stimulated
emission never dominates.

Figure 2(b) plots inverse delay time as function of current and shows that 1/td ∝ Istep for
current Iinj > Ith. The minimum value of the dip in 1/td at Ith is proportional to an energy gap
that separates the sustained lasing and non-lasing states of the system.

(a) (b)

β = 10-4

β = 10-4

β = 1

β = 1

0 5 10 15 20

Current, Istep (mA)

0

2

4

6

T
im

e
 d

el
a
y,

t d
(n

s)

8

0 5 10 15 20

Current, Istep  (mA)

0.0

0.5

1.0

1.5

In
v

e
rs

e 
ti

m
e 

d
e
la

y,
1

/t
d

(n
s-1

)

Ith = 5.7 mA

Figure 2. (a) Time delay, td, as a function of step current Istep for values of spontaneous emission factor
β = 10−4, β = 10−3, β = 10−2, β = 10−1, and β = 1. (b) Inverse of time delay, 1/td, as a function of step
current for the same values of spontaneous emission factor, β, used in (a). The calculation uses the same
parameters as in Fig. 1.

3. FLUCTUATIONS

The analogy between the statistical properties of laser light and second-order thermodynamic phase
transitions has practical consequences. Lasing light is ordered and spontaneous emission is not. As
injection current approaches the threshold current of a laser diode (LD) unsustainable fluctuations
into a lasing state increasingly convert carriers into photons. These fluctuations contribute to below-
threshold reduction in carrier density. Optical emission from a laser diode consists of lasing and
nonlasing components. The nonlasing component has spectrally broadband emission into nonlasing
optical modes, similar to that of a light emitting diode (LED). The lasing component has spectrally
narrow-band emission into the lasing mode and temperature dependence below threshold that is
well characterized by a power law, in direct analogy with Landau-Ginzburg theory of second-order
phase transitions [9].

A Fabry-Perot laser diode (LD) can become a light emitting diode (LED) by anti-reflection
coating the cavity mirrors of the device. In this way the influence of subthreshold fluctuations in
a LD can be compared to a LED of the same geometry and active region [10, 11]. Experiments
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suggest that subthreshold fluctuations into the laser cavity modes of a LD extract a current, Ifl,
that is of increasing relative importance in determining threshold current as temperature increases.

Current, Iinj  (mA)

C
a
rr

ie
r 

d
en

si
ty

,
n
 (

x
 1

0
1

8
 c

m
-3

)

C
a
rr

ie
r 

d
en

si
ty

,
n
 (

x
 1

0
1

8
 c

m
-3

)

Current, Iinj  (mA)

LD (T = 55 oC)

LED (T = 55 oC)LED (T = 25 oC)

LD (T = 25 oC)

Ith = 9.7 mA Ith = 21.5 mA

1.0

1.5

0.5

0.0

2.0

2.5

3.0

0 10 20 30 40 50

1.0

1.5

0.5

0.0

2.0

2.5

3.0

0 10 20 30 40 50

(a) (b)

Ifl = 10 mAIfl = 4 mA

Figure 3. Carrier density, n, as a function of injection current, Iinj , for light emitting diode (LED) and laser
diode (LD) of the same geometry and active region. (a) Temperature T = 298K (25◦C), LD threshold current
Ith = 9.7mA, and Ifl = 4mA. (b) Temperature T = 328K (55◦C), LD threshold current Ith = 21.5 mA,
and Ifl = 10 mA. Fluctuations enhance lasing emission below threshold and remove carriers below threshold.
Fluctuations contribute to the temperature dependence of LD threshold current.

Figure 3 shows carrier density n versus injection current, Iinj , for LD and LED of the same
geometry and active region measured at two different temperatures. Carrier density in the LED is
a less nonlinear function of injection current and less sensitive to temperature than the LD. Photons
fluctuating into cavity modes of the LD cause carrier density to be suppressed more effectively than
in the corresponding LED device. Thus, to reach lasing threshold current, Ith, an extra current,
Ifl, is required to overcome the effects of carrier suppression due to photon fluctuations. The
current Ifl is the difference in drive current between LED and LD to reach LD threshold carrier
density, nth. Figure 3(a) shows that Ifl accounts for almost half the LD threshold current, Ith. At
elevated temperatures the threshold carrier density increases, fluctuations are enhanced, and the
contribution of Ifl increases. Subthreshold fluctuations act as a feedback mechanism that cause
laser threshold current Ith to increase with increasing temperature.

4. SEMICLASSICAL MASTER EQUATIONS

As a first step to capture the physics dominating mesoscale laser behavior, semiclassical master
equations with continuum probability functions to describe quantized particle number states may
be used. This approach reveals that quantum fluctuations dominate steady-state and transient
response in small devices [12, 13]. The fluctuations and the fact that a lowest energy state of the
system exists, suppress lasing and enhance spontaneous emission near threshold, and create non-
Poisson probability distributions for excited electronic states and photon number. However, while
the semiclassical master equations account for energy and particle number conservation they do
not include phase fluctuations and important correlation effects. In particular, they cannot be used
to predict the existence of symmetry-protected entangled quantum dark states.

5. QUANTUM MODEL

A laser requires at least one externally driven emitter interacting with a photon mode of a cavity.
Practical devices consist of multiple atoms (or semiconductor quantum dots) in an optical cavity.
The emitters are driven by an external reservoir such as a battery in the case of a semiconductor
device. Rather than specify a laser diode current, the emitters of a mesoscale laser may be consid-
ered to be driven by a more general pump that excites emitters at a rate P . Photons generated by
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deexcitation of emitter electron states are coupled via partially reflecting mirrors of the cavity to
external continuum reservoir modes. A mesoscale laser can be modeled as consisting of a positive
non-zero integer number, Ne, two-level atom or quantum dot emitters incoherently pumped by an
external reservoir and interacting with a quantized photon field that has a positive integer number,
Snum, cavity photons that can decay into an external reservoir through finite reflectivity mirrors.

In a fully quantum model of a single quantum dot laser [14] or mesoscale laser [15], the Hamil-
tonian describing Ne two-level emitters is

H = HS + HR + HRS (1)

where HS is the Hamiltonian of the system of emitters and cavity photons, HR is the Hamiltonian
for the reservoirs, and HRS couples the system to the reservoirs. For a homogeneous system
of identical emitters, HS is often taken to be the Jaynes-Cummings Hamiltonian [16] coupling
a single-cavity mode with a sum over the Ne two-level emitters. The emitter electronic states
are continuously incoherently pumped at rate P by an external reservoir. The stimulated and
spontaneous emission coefficient coupling the ground |1〉 and excited |2〉 electronic states of each
emitter is g. The separation in emitter eigenenergy is ~ω = E2−E1, where, on resonance, ω is the
angular frequency of the high-Q optical cavity resonance. The emitters are damped at rate γ by a
reservoir of oscillators representing incoherent decay via spontaneous emission into nonlasing leaky
modes. Decay of the laser photon field in the single-cavity mode is by coupling to another external
reservoir through partially transmitting mirrors with total photon loss rate κ. To emphasize the
role of quantum fluctuations in determining behavior, the system is assumed to be maintained at
zero absolute temperature.

Figure 4 shows results of calculating steady-state properties for the indicated number of two-
level emitters coupled to a single-mode cavity field as a function of incoherent normalized pump
rate Pnorm using a log10 scale (Pnorm = P/Ne, the pump rate divided by the number of emitters).
In the Figure, (a) is the average photon number 〈Snum〉 in the lasing mode, (b) is net average
inversion of emitters 〈σ2 − σ1〉, (c) is the Fano-factor (relative variance) of photon fluctuations,(〈

S2
num

〉− 〈Snum〉2
)

/ 〈Snum〉 = σ2
Snum

/ 〈Snum〉, and (d) is the time-averaged spectral linewidth
∆ωFWHM of photon emission into the laser mode. Unlike a macroscopic device, there is no abrupt
change in slope of 〈Snum〉 with increasing pump that can be associated with laser threshold pump
value, Pth. For this reason, the laser threshold of a mesoscale laser is taken to occur at the peak in
photon Fano-factor at low pump rate (in this case when Pnorm < 1meV). High pump levels cause
emitter inversion to saturate and a corresponding self-quenching peak in average photon number
〈Snum〉 occurs (in this case when Pnorm > 10meV). The pump value at which the associated peak
in photon Fano-factor occurs is Psq. Calculated behavior shown in Fig. 4 is for 1 ≤ Ne ≤ 5.

Initially, full-width-at-half-maximum spectral line width, ∆ωFWHM , decreases with increasing
pump rate. However, self-quenching causes a peak in 〈Snum〉 and fluctuations in photon number,
as measured by Fano factor σ2

Snum
/ 〈Snum〉, also peaks near these pump levels due to dissipation

associated with self-quenching. The same mechanism increases the photon emission spectral line
width, ∆ωFWHM .

Mesoscale lasers are not lasers in the sense usually associated with macroscopic devices. Con-
ventional semiconductor laser diodes contain many emitters and when driven near threshold can
be characterized by a well-defined nonequilibrium phase transition in which the photon field is the
order-parameter. While such a phase transition formally only exists in the thermodynamic limit,
mesoscale lasers retain signatures of lasing in conventional macroscopic devices such as inversion
pinning and a peak in photon fluctuations near pump threshold. Reducing photon losses by decreas-
ing κ and γ, and enhancing total optical gain by increasing Ne, scales meso-laser characteristics
towards classical, and hence demonstrably useful, behavior. However, in very small devices, self-
quenching associated with a low value of Ne limits performance at high pump rates. Self-quenching
is a fundamentally finite-size effect associated with meso-scale lasers.

As a direct consequence of the fluctuation-dissipation theorem [17], both self-quenching and
laser threshold are associated with peaks in photon Fano-factor. At low values of pump there can
also exist special symmetry-protected entangled quantum states [18]. A well-known example occurs
when Ne = 2 and each emitter has identical coupling strength g. The symmetry of the entangled
two-emitter singlet state is such that photon emission into the cavity mode is not allowed, resulting
in a long-lived (almost) dark state. However, as shown in Fig. 5, with increasing pump, dissipation
and an associated peak in photon emission Fano-factor occurs at pump value Psym as dark-state
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Figure 4. Calculated steady-state properties for the indicated number of two-level emitters coupled to a
cavity field with normalized incoherent pump Pnorm. (a) Mean photon number in lasing mode. (b) Average
net inversion of emitters. (c) Photon Fano-factor. (d) Spectral line width. Laser threshold corresponds to
Fano-factor peak with P < 1meV. The Fano-factor peak due to self-quenching occurs when P > 10meV.
The horizontal axis shows the pump value divided by number of emitters and is plotted using a log10 scale.
Behavior for different number of emitters is shown with Ne = 1 (black), Ne = 2 (red), Ne = 3 (green), Ne = 4
(blue), and Ne = 5 (magenta). Parameters are: g = 1 meV; γ = 0.1meV; ~ω = 1000 meV; κ = 0.25meV.
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Figure 5. Calculated steady-state mean photon number and photon Fano-factor for Ne = 2 two-level emitters
coupled to a cavity field with incoherent pump Pnorm. Laser threshold corresponds to broad peak in Fano
factor at pump value Pth. Peak due to self-quenching occurs at pump value Psq. The peak in photon
Fano-factor at pump value Psym occurs due to dissipation associated with the destruction of the symmetry-
protected state. Parameters g, κ, and γ are indicated.

lifetime is reduced. This photon Fano-factor peak is an experimentally measurable indicator of
where, as a function of pump, the system transitions between different operational characteris-
tics [19]. In general, the boundary region between different modes of operation is associated with
dissipation and hence fluctuations. Dissipation occurs because the lifetime of states necessarily
changes as the system transitions between different modes of operation. For P < Psym the device
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behavior is dominated by the presence of long-lived dark-states. For pump values Psym < P < Pth

spontaneous emission and sub-threshold fluctuations occur, and for pump values Pth < P < Psq

average net inversion of emitters is pinned and lasing dominates. When pump values P > Psq

emitter inversion in the finite-sized system saturates, self-quenching occurs, and there is a peak in
photon fluctuations.

6. CONCLUSION

Photon fluctuations in both classical macroscopic and mesoscale lasers play an important role in
determining device performance. Control of fluctuations can result in useful device behavior. For
example, a macroscopic laser diode operating close to the thermodynamic limit can have a lasing
mode emission linewidth and photon Fano-factor that decreases with increasing injection current
Iinj > Ith. In contrast, the reduction in linewidth and reduction in photon Fano-factor in a meso-
laser as pump is increased to values greater than Pth is limited by the existence of self-quenching as
pump values approach Psq. Overcoming such practical limitations associated with mesoscale lasers
presents an interesting challenge whose successful solution might be demonstrated by showing con-
trol of fluctuations caused by laser threshold, self-quenching, or dissipation in symmetry-protected
quantum states.
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