Quantum Behavior in Mesoscale Lasers

A.F.J. Levi University of Southern California

PIERS 2019 Rome

4.00pm Monday June 17, 2019, Session 1P14 FocusSession.SC3: Nanophotonics 2, Room 24 - 2nd Floor

The macroscopic semiconductor laser diode

- Second-order non-equilibrium phase transition with optical field as the order parameter
- Fluctuations enhance lasing emission below laser threshold and contribute to temperature dependence of semiconductor laser diode threshold current

Semiclassical master equations to describe mesolasers

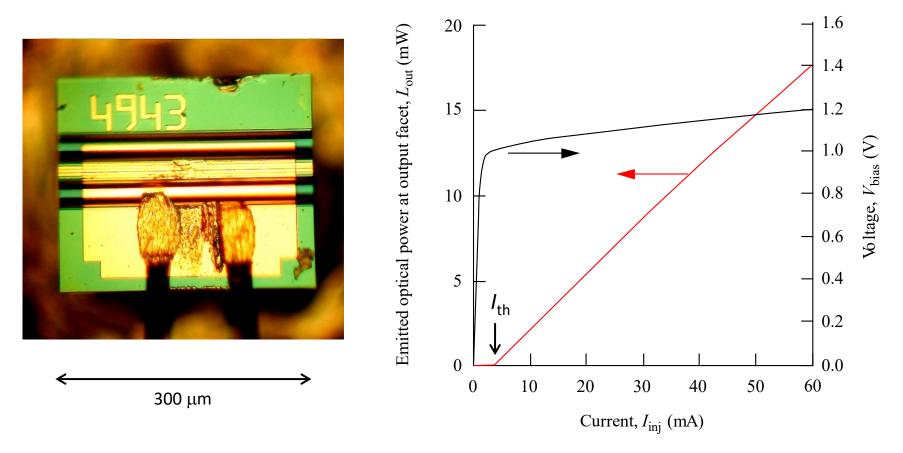
- Comparison between mean-field and probabilistic picture
- Semiclassical system trajectories and photon blinking modelled by the Monte Carlo method

A quantum mechanical meso-laser model

- Steady-state properties as a function of pump and number of emitters
- Photon Fano-factor, excitation pinning, emission linewidth
- Symmetry-protected long-lived emitter states in meso-lasers
 Future challenges

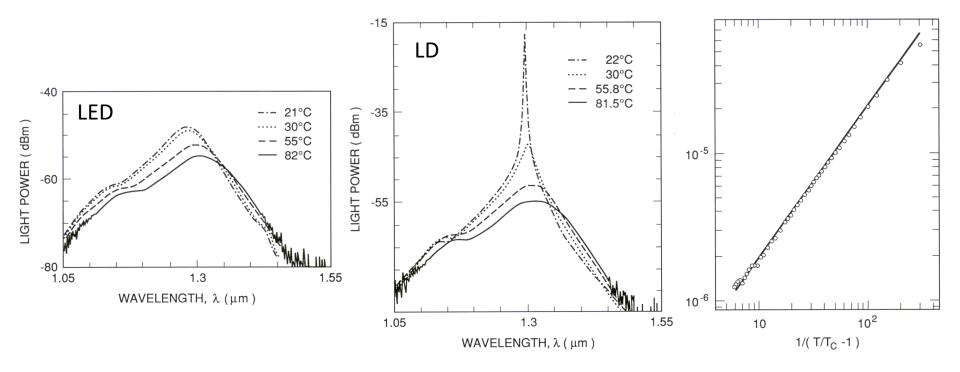
The macroscopic semiconductor laser diode

- Second-order non-equilibrium phase transition with optical field as the order parameter
- Fluctuations enhance lasing emission below laser threshold and contribute to temperature dependence of semiconductor laser diode threshold current

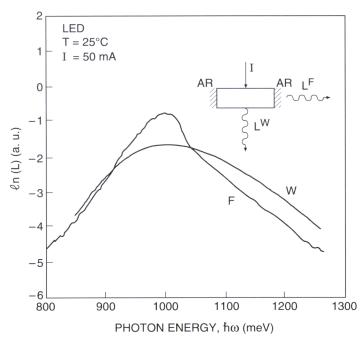

Semiclassical master equations to describe mesolasers

- Comparison between mean-field and probabilistic picture
- Semiclassical system trajectories and photon blinking modelled by the Monte Carlo method

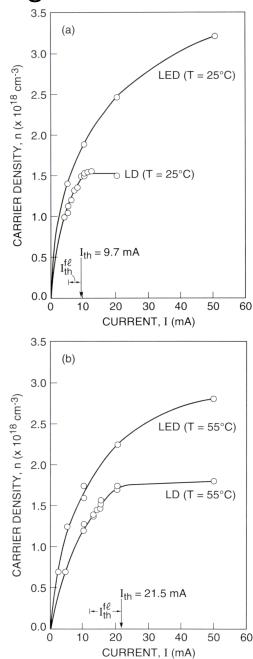
A quantum mechanical meso-laser model


- Steady-state properties as a function of pump and number of emitters
- Photon Fano-factor, excitation pinning, emission linewidth
- Symmetry-protected long-lived emitter states in meso-lasers Future challenges

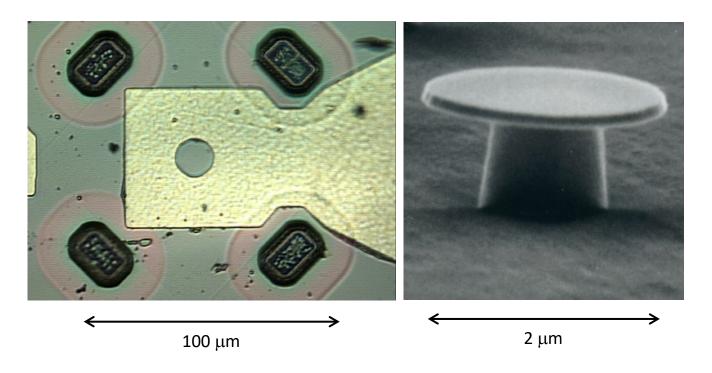
The macroscopic semiconductor laser diode


- Photons experience non-linear threshold behavior transitioning from disordered light (spontaneous emission) to ordered light (stimulated emission) with increasing pump current
 - Active volume V = 300 x 0.14 x 0.8 μ m³ = 34 x 10⁻¹² cm⁻³ = 34 μ m³
 - $I_{\text{th}} = 3 \text{ mA}$, $\langle n \rangle = 2 \times 10^7$, $\langle s \rangle = 10^5$, $\beta = 10^{-4}$, 7 ps photon cavity round-trip
- Existing mean-field theories (rate equations and Gaussian noise Langevin) applies to these large systems

Fluctuations enhance light output below $I_{\rm th}$


- Experimentally compare LED and LD using *same* geometry and active region
 - AR coat LD to make LED
- Landau-Ginzburg phase transition analogy for macroscopic semiconductor laser with belowthreshold fluctuations into the lasing state
 - Intensity fluctuations scale as $1/(T/T_c 1)^{\gamma}$
 - Experimentally γ =1.04, $T_{\rm C}$ = 301.4 K

Fluctuations and carrier pinning



- Carrier number *n* from *L*_w (spontaneous emission)
 - Carrier pinning above threshold current
- Fluctuations in photons s remove carriers below threshold and contribute to the temperature dependence of laser diode threshold current, I_{th}
 - There is a contribution, $I_{\rm fl}$, to the threshold current $I_{\rm th}$
- Continuum mean-field rate equations set <ns> = <n> <s> and d<n>/dt = I -B<n²> - aΓ<n-n₀><s>/V

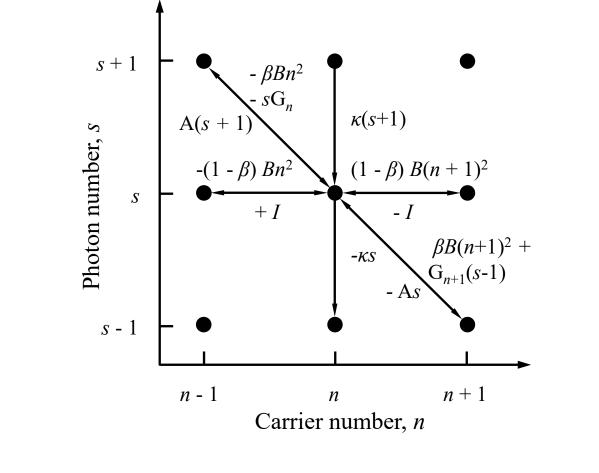
$$d < s > /dt = \beta B < n^2 > + a \Gamma < n - n_0 > < s > / V - \kappa < s >$$

Semiclassical master equations to describe mesolasers

- Fraction of spontaneous emission into lasing mode increases with decreasing optical cavity size
 - Phenomenological parameter β can increase from ~10⁻⁵ to \leq 1
 - Role of fluctuations is of increasing importance in mesolasers
 - *Control* of photon number and excitation number fluctuations is an outstanding challenge
- Capture physics of particle number quantization using master equations (a set of differential equations in continuous probability functions, P_{ns}) to describe quantized particle number states in the system

The macroscopic semiconductor laser diode

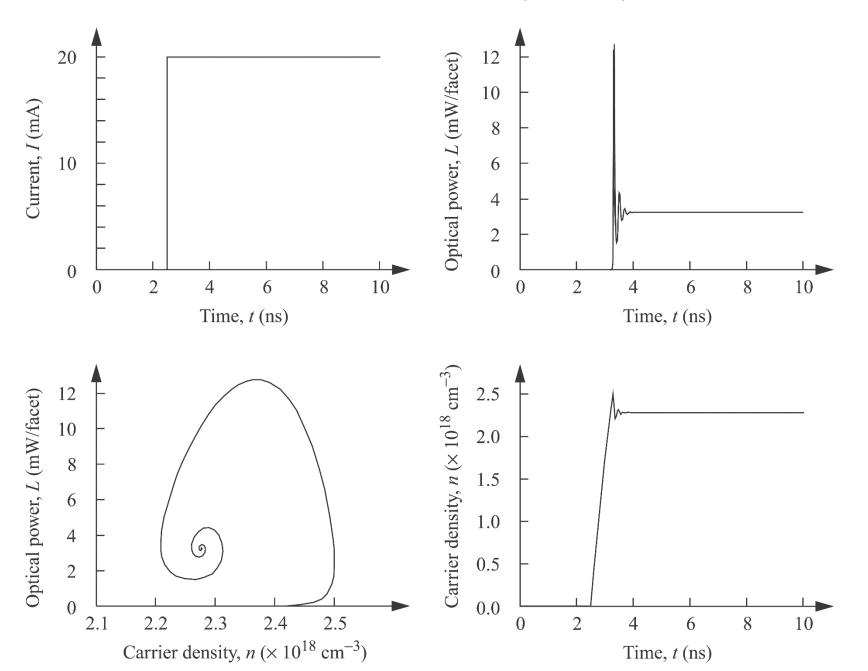
- Second-order non-equilibrium phase transition with optical field as the order parameter
- Fluctuations enhance lasing emission below laser threshold and contribute to temperature dependence of semiconductor laser diode threshold current


Semiclassical master equations to describe mesolasers

- Comparison between mean-field and probabilistic picture
- Semiclassical system trajectories and photon blinking modelled by the Monte Carlo method

A quantum mechanical meso-laser model

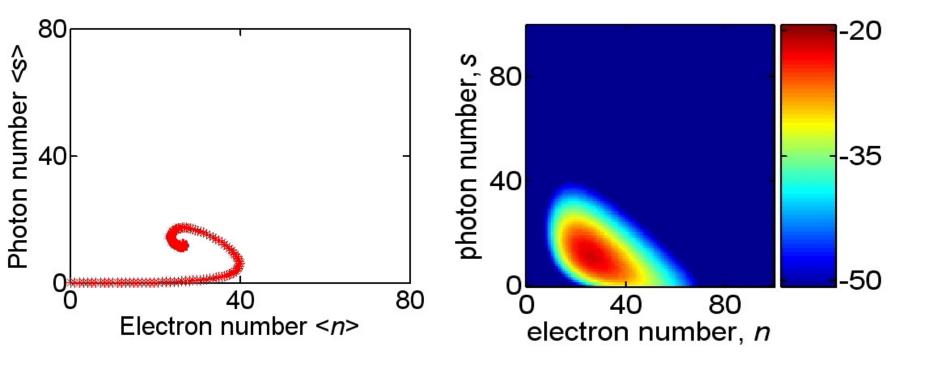
- Steady-state properties as a function of pump and number of emitters
- Photon Fano-factor, excitation pinning, emission linewidth
- Symmetry-protected long-lived emitter states in meso-lasers Future challenges


Semiclassical master equations to describe mesolasers

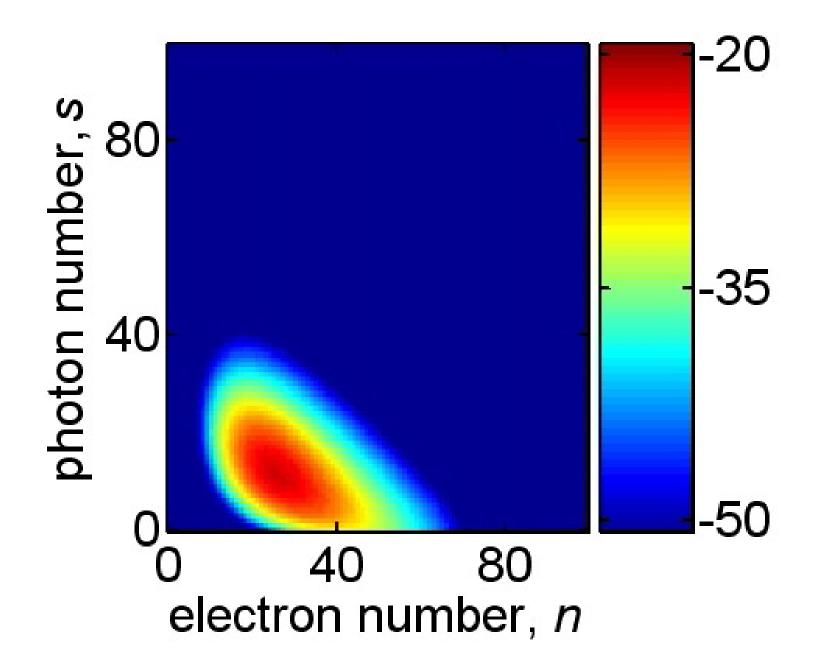
$$\frac{\mathrm{d}P_{n,s}}{\mathrm{d}t} = -\kappa(sP_{n,s} - (s+1)P_{n,s+1}) - (sG_nP_{n,s} - (s-1)G_{n+1}P_{n+1,s-1}) - (sAP_{n,s} - (s+1)AP_{n-1,s+1}) - \beta B(n^2P_{n,s} - (n+1)^2P_{n+1,s-1}) - (1-\beta)B(n^2P_{n,s} - (n+1)^2P_{n+1,s}) - I(P_{n,s} - P_{n-1,s})$$

- Capture physics of particle number quantization
 - Quantize photon number s and excited emitter electron particle number n, correlations <ns> ≠ <n> <s>, photon energy ħω₀

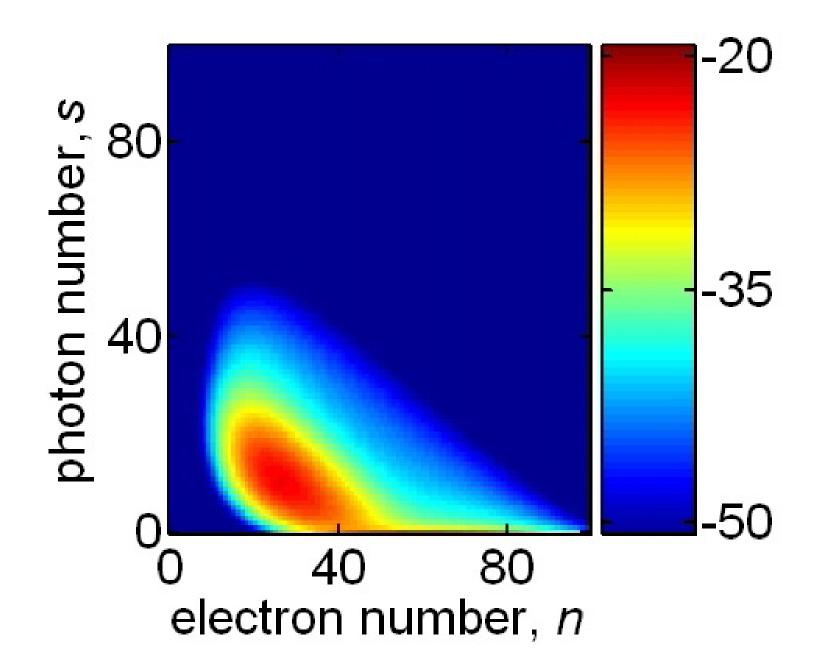
Continuum mean-field rate equation prediction

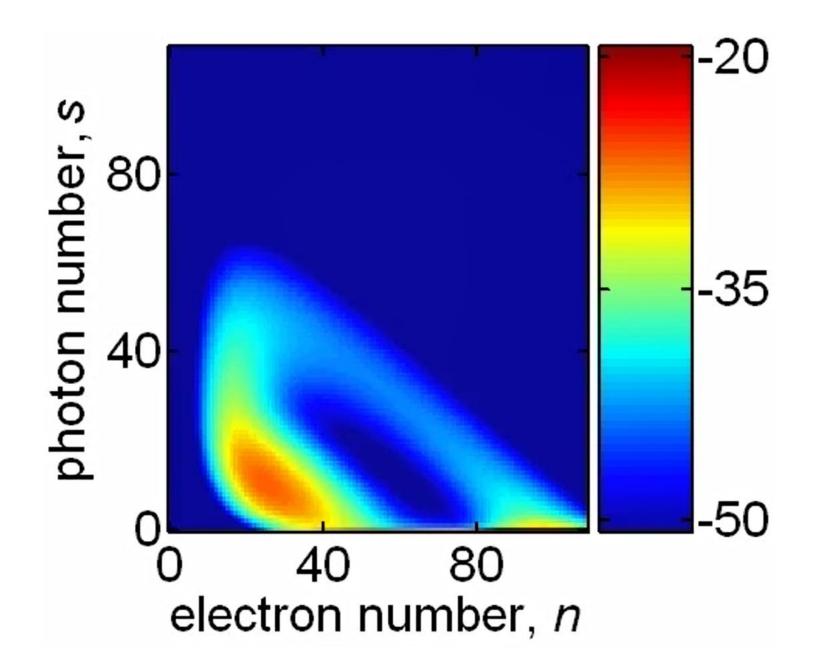


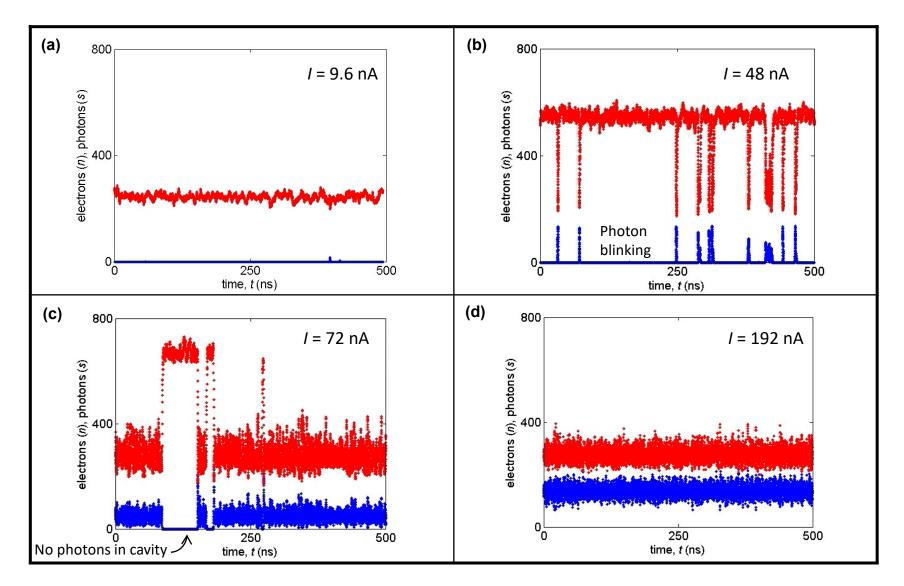
10


Comparison between mean-field and probabilistic picture

Continuum mean-field rate equation prediction


Modeling discrete quantum system using continuum probability functions, $P_{n,s}$


Probabilistic semiclassical master equation picture, $P_{n,s}$ for *n* electron excitations and *s* photons in the cavity Time evolution of $10\log_{10}(P_{ns})$ for $\beta=1$


Time evolution of $10\log_{10}(P_{ns})$ for $\beta=0.1$

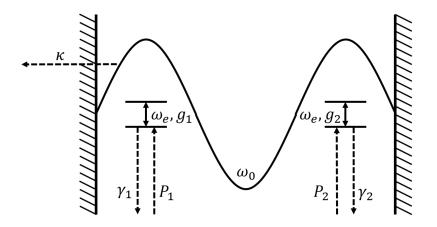
Time evolution of $10\log_{10}(P_{ns})$ for $\beta=0.01$

Semiclassical system trajectories by the Monte Carlo method

(a) I = 9.6 nA. (b) I = 48 nA. Note, photon blinking. (c) I = 72 nA. (d) I = 192 nA. Electrons (red), photons (blue). Parameters : Volume = $0.1\mu m \times 0.1\mu m \times 10nm$, $\Gamma = 0.25$, $a = 2.5 \times 10^{-18} \text{ cm}^2 \text{ s}^{-1}$, $B = 10^{-10} \text{ cm}^3 \text{ s}^{-1}$, $\beta = 10^{-4}$, $n_0 = 10^{18} \text{ cm}^{-3}$, $\alpha_1 = 1 \text{ cm}^{-1}$, $n_r = 4$, $r = 1 - 10^{-6}$.

The macroscopic semiconductor laser diode

- Second-order non-equilibrium phase transition with optical field as the order parameter
- Fluctuations enhance lasing emission below laser threshold and contribute to temperature dependence of semiconductor laser diode threshold current

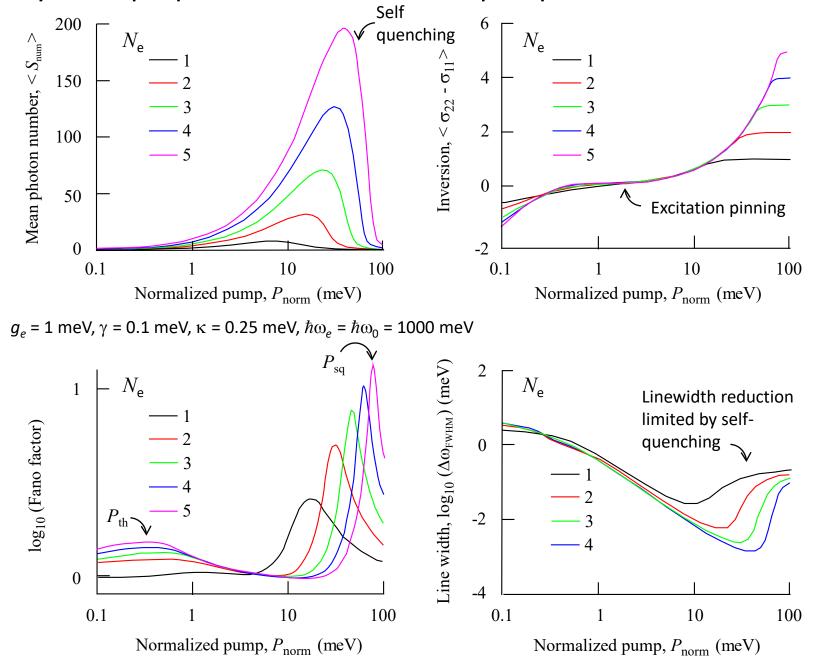

Semiclassical master equations to describe mesolasers

- Comparison between mean-field and probabilistic picture
- Semiclassical system trajectories and photon blinking modelled by the Monte Carlo method

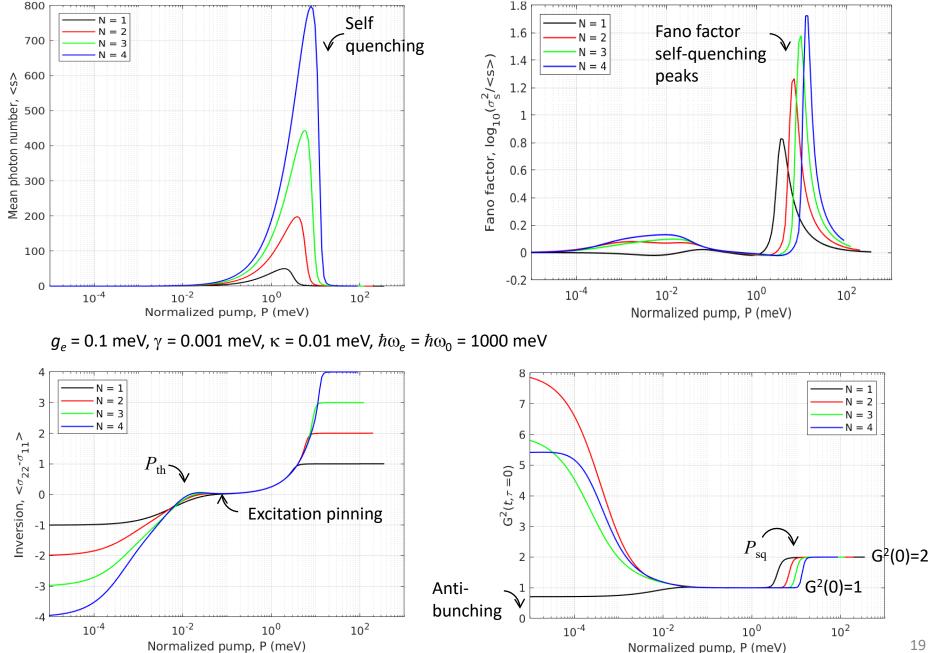
A quantum mechanical meso-laser model

- Steady-state properties as a function of pump and number of emitters
- Photon Fano-factor, excitation pinning, emission linewidth
- Symmetry-protected long-lived emitter states in meso-lasers Future challenges

A quantum mechanical meso-laser model

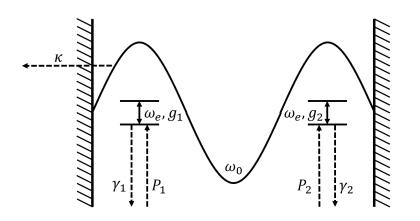


Solve open system with Linblad master equation: (e.g. K. Roy-Choudhury and A. F. J. Levi, Phys. Rev. A **83**, 043827 (1-9) (2011))


$$\frac{\mathrm{d}\hat{\rho}}{\mathrm{dt}} = \frac{i}{\hbar} [\hat{\rho}, H_{\mathrm{S}}] + \frac{\kappa}{2} \left(2\hat{b}\hat{\rho}\hat{b}^{\dagger} - \hat{b}^{\dagger}\hat{b}\hat{\rho} - \hat{\rho}\hat{b}^{\dagger}\hat{b} \right) \\ + \sum_{n=1}^{N_{e}} \frac{\gamma_{n}}{2} \left(2\hat{\sigma}_{n}\hat{\rho}\hat{\sigma}_{n}^{\dagger} - \hat{\sigma}_{n}^{\dagger}\hat{\sigma}_{n}\hat{\rho} - \hat{\rho}\hat{\sigma}_{n}^{\dagger}\hat{\sigma}_{n} \right) \\ + \sum_{n=1}^{N_{e}} \frac{P_{n}}{2} \left(2\hat{\sigma}_{n}^{\dagger}\hat{\rho}\hat{\sigma}_{n} - \hat{\sigma}_{n}\hat{\sigma}_{n}^{\dagger}\hat{\rho} - \hat{\rho}\hat{\sigma}_{n}\hat{\sigma}_{n}^{\dagger} \right)$$

$$H_{\rm S} = \hbar \omega_0 \hat{b}^{\dagger} \hat{b} + \sum_{n=1}^{N_e} \hbar \omega_e \hat{\sigma}_n^{\dagger} \hat{\sigma}_n + \sum_{n=1}^{N_e} \hbar g_e \left(\hat{b} \hat{\sigma}_n^{\dagger} + \hat{b}^{\dagger} \hat{\sigma}_n \right)$$

Steady-state properties as a function of pump and number of emitters



Steady-state properties as a function of pump and number of emitters

19

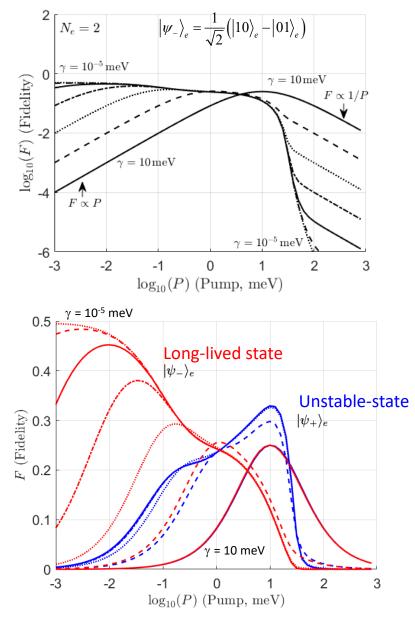
Symmetry-protected long-lived emitter states in meso-lasers

Photon Fano factor measures spread in photon number distribution normalized to mean photon number

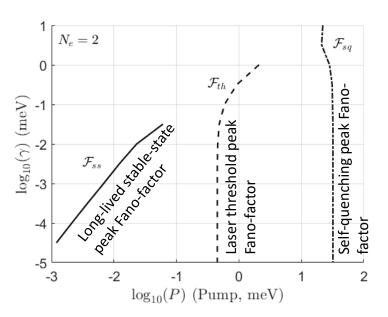
$$\mathcal{F}(\hat{\rho}) = \frac{\sigma_s^2}{\langle s \rangle} = \frac{Tr(\hat{\rho}\hat{s}^2) - Tr(\hat{\rho}\hat{s})^2}{Tr(\hat{\rho}\hat{s})}$$


 $N_{\rm e} = 2$ symmetry-protected long-lived emitter state $|\psi_{-}\rangle_{e} = \frac{1}{\sqrt{2}} (|10\rangle_{e} - |01\rangle_{e})$

 $N_{\rm e}$ = 2 short-lived emitter state coupling to cavity mode


$$\left|\psi_{+}\right\rangle_{e} = \frac{1}{\sqrt{2}} \left(\left|10\right\rangle_{e} + \left|01\right\rangle_{e}\right)$$

Fidelity measures similarity between two density matrices


$$F\left(\hat{\rho}_{1},\hat{\rho}_{2}\right) = Tr\left[\sqrt{\sqrt{\hat{\rho}_{1}}\hat{\rho}_{2}\sqrt{\hat{\rho}_{1}}}\right]^{2}$$

Behavioral regimes for long-lived emitter states in meso-lasers

g = 1 meV, γ = 10⁻⁵ - 10 meV, and κ = 0.25 meV

Values of pump, *P*, at which the Fano factor peaks for a given value of γ (loss into non-lasing modes) indicating transitions between regimes of different dynamic behavior

 N_e = 2, g = 1 meV, and κ = 0.25 meV.

In phase transition analogy, Fano factor peaks *separate* different characteristic behavior Lifetime τ_{-} of symmetry-protected long-lived state determined by γ and P, so can have $\tau_{-} > 1$ ns Lifetime τ_{+} of short-lived state determined by fastest process coupling to the cavity mode, in this case via g, so $\tau_{-} \sim 1$ ps

The macroscopic semiconductor laser diode

- Second-order non-equilibrium phase transition with optical field as the order parameter
- Fluctuations enhance lasing emission below laser threshold and contribute to temperature dependence of semiconductor laser diode threshold current

Semiclassical master equations to describe mesolasers

- Comparison between mean-field and probabilistic picture
- Semiclassical system trajectories and photon blinking modelled by the Monte Carlo method

A quantum mechanical meso-laser model

- Steady-state properties as a function of pump and number of emitters
- Photon Fano-factor, excitation pinning, emission linewidth
- Symmetry-protected long-lived emitter states in meso-lasers

Future challenges

Future challenges

- Photon and excitation fluctuations in both classical macroscopic and mesoscale lasers play an important role in determining device performance
 - While mesoscale lasers might exhibit quantum behavior, there is no agreed *measure* of how much quantumness (wave-particle duality, identical indistinguishable particles, linear superposition of particle states, non-local entanglement of particles, ...)
- Fluctuations peak around transitions between characteristic behavioral modes of operation
 - Laser threshold: analogous to a second-order non-equilibrium phase transition with the optical field as the order-parameter
 - Self-quenching: excitation saturation
 - Symmetry-protected long-lived states
- Control of fluctuations and associated dissipation (n.b. the fluctuation-dissipation theorem) can result in useful device behavior
 - For example, a macroscopic laser diode operating close to the thermodynamic limit can have a lasing mode emission linewidth and photon Fano-factor that decreases with increasing injection current $I_{inj} > I_{th}$.
 - In contrast, the reduction in linewidth and reduction in photon Fano-factor in a mesolaser as pump is
 increased to values greater than P_{th} is limited by the existence of self-quenching as pump values approach P_{sq}
- Overcoming practical limitations associated with control of mesoscale laser behavior presents an interesting challenge whose successful solution might be demonstrated by suppression of fluctuations that occurs near laser threshold, self-quenching, or dissipation in symmetry-protected quantum states

Acknowledgements

Amine Abouzaid

James O'Gorman

Kaushik Roy-Choudhury

Walter Unglaub

K. Roy-Choudhury and A. F. J. Levi, "Quantum fluctuations and saturable absorption in mesoscale lasers" Phys. Rev. A 83, 043827 (1-9) (2011))

Amine Abouzaid, Walater Unglaub, and A. F. J. Levi, "Behavioral regimes and longlived emitter states in mesolasers" J. Phys. B **52**, 245401 (2019)

END