RF receiver with integrated blind-source separation

A.F.J. Levi
University of Southern California

Presented at the Paul Scherrer Institute, July 26, 2016

Motivation: The cocktail party problem

- Suppose there are simultaneous independent conversations at a cocktail party and, without prior knowledge of individual voices or languages, your objective is to isolate each speaker (or source)
- This is a blind-source separation problem
- Using multiple microphones, the linearity of the system, and the fact real-time audio signals are independent and not Gaussian noise, it is possible to use independent component analysis (ICA) or machine learning (ML) to solve the inverse problem
- This is an inverse problem (a subset of more general optimization) because the (solution) sources are known to exist

Motivation: Applying the cocktail party problem to RF signals

- In the RF environment the equivalent of multiple voices at a cocktail party are unknown sources of complex signals (they have I and Q components) with frequency, temporal, and spatial characteristics
- Blind-source separation (followed by classification and demodulation) of signals is of interest in both commercial (e.g. cognitive radio) and military (e.g. urban environment) applications
- The linear $N x N$ mixing matrix A gives complex RF input at the N antennas $X(\mathrm{t})=\mathrm{AS}(\mathrm{t})$
Only the measured signals \mathbf{X} at each antenna are known. The mixing matrix \mathbf{A} and the source signals \mathbf{S} are unknown. The objective is to find the unknown original complex signals
$\mathbf{S}(\mathrm{t})=\mathbf{A}^{-1} \mathbf{X}(\mathrm{t})$
If \mathbf{A}^{-1} exists then ICA can find an approximation of \mathbf{A}^{-1} and unmix the linear combination to give $\mathbf{Y}(\mathrm{t})=\mathbf{W} \mathbf{X}(\mathrm{t})$
where \mathbf{W} approximates \mathbf{A}^{-1} and $\mathbf{Y}(\mathrm{t})$ approximates $\mathbf{S}(\mathrm{t})$

Motivation: Blind-source separation of multiple signals using ICA chip before digitization in RF receiver

- ICA can separate N-signals from an N antenna receiver
- It is also possible to separate more than N signals
- Because ICA signal separation can be performed in a mixed-signal circuit before digitization, the ADC requirements of the receiver can be relaxed
- The ICA signal separation function implemented in hardware before digitization off-loads receiver DSP requirements
- The mixed-signal circuit performs efficient matrix multiplication $\mathbf{Y}=\mathbf{W X}$ via programmable multiply-accumulate operations (MAC) on real-time complex signals
- Because programmable matrix multiplication is a general operation, it can be used to perform other signal processing functions prior to digitization

ICA chip performs blind-source signal separation before RF receiver ADC

Analog signals \mathbf{Y} characterized by correlation to \mathbf{S} using coefficient

$$
C_{x y}=\left|\mathbf{S}_{x}^{\top} \cdot \mathbf{Y}_{y}\right|
$$

Conventional digital receiver versus ICA-chip enhanced receiver

- Conventional digital receivers are susceptible to jammer interference in EW and cognitive radio
- Fundamental to conventional digital receiver is that the SUM of all received signals MUST be digitized first because any DSP processing and blocking of jammer signal can only occur AFTER the ADC
- Full burden on ADC and DSP
- The ICA chip can spatially block jammers BEFORE the ADC and this allows relaxed ADC specification (e.g. 2-3 bits of linearity required for convergence of matrix weights, 8 bits for demodulation, etc.)
- Adaptive offload of ADC and DSP

Conventional digital receiver versus ICA-chip enhanced receiver

- Typically, max. 1Vpp limited by VDD=1.2V, 62dB DR (10-b), 20dB SNR (0.1mVpp) -> +4-b digital receiver
- For fixed bandwidth and fixed number of poles in anti-alias filter, the extra bits of resolution required in digital receiver increases sampling rate to protect against aliasing

EXAMPLE

- BW $=7 \mathrm{MHz}$ (Nyquist sampling rate is $14 \mathrm{MS} / \mathrm{s}$) and $6-$ pole anti-alias filter (attenuation $-120 \mathrm{~dB} /$ decade)
- For N -bit ADC sampling at rate f_{s}, filter attenuation must be below SNR at frequency $f_{s} / 2$
$-f_{\mathrm{s}}=2 \times B W \times 10^{\mathrm{SNR}(\mathrm{dB}) /(\# \mathrm{poles} x 20 \mathrm{~dB})}$
- SNR=(Nx6.0206+1.761)dB
- ICA chip with 3-b ADC (SNR=20dB) to converge algorithm matrix weights samples at $22 \mathrm{MS} / \mathrm{s}$ (1.6xNyquist)
- ICA chip with 8-b ADC (SNR=50dB) to demodulate samples at 40MS/s (2.8xNyquist)
- Conventional digital receiver with 14-b (SNR=86dB) ADC samples at near 80MS/s (5.7xNyquist)

Conventional digital receiver versus ICA chip (single channel)

Current ICA chip in 65nm CMOS
$10 \mathrm{~mW} /$ channel (current spin/design time) or $<1 \mathrm{~mW} /$ channel with additional design time. Use 1 mW /channel for comparison of potential power savings versus CDR

LPF
6-pole
7MHz BW

ADC
8b
36MS/s
0.085 mW .

DSP
1.25 mW

CDR replicating current ICA chip in 65 nm CMOS consumes $12+32+12=56 \mathrm{~mW} /$ channel. DSP 73MS/s*16*10pJ/OP=11.68 mW.

*Analog Devices AD9269 $=44 \mathrm{~mW}$ Power Dissipation at $20 \mathrm{MSPS} /$ Channel ($36 \mathrm{fJ} /$ conversion)
**Analog Devices research 14b, 80MS/s, 35.1mW (with ref) in 65nm CMOS, ISSCC 2013 ($26 \mathrm{fJ} /$ conversion) ^ TMSC320C5534

2.1 mW versus 56 mW in digital = 27x savings per channel

 17 mW versus 448 mW in digital $=27 x$ savings 8 channel chip
Motivation: Conventional digital receiver processing versus ICA chip

Problem: Unknown signal modulations hard to sort and segment

- Power-expensive computations required to sort and error prone

ICA chip

- Signals separate in angle with ICA adaptive nulling
- Metric for sinusoidal sources is suppression ratio (dB)
- ICA-chip simplifies segmentation, lowpower, carrier invariant
- Works in EW and cognitive radio environment

Principles of ICA for blind-source separation of signals

Definition of
Statistical Independence $\quad P\left(Y_{1}, Y_{2}\right)=\mathrm{P}\left(Y_{1}\right) \mathrm{P}\left(Y_{2}\right)$
$P\left(Y_{1} \mid Y_{2}\right)=\mathrm{P}\left(Y_{1}\right)$

- Compare instantaneous voltages received in two channels (i.e. two antennas)
- Linear mixtures of independent sources can be recognized by conditional dependence properties (except for Gaussian distributed case)
- Mixtures of non-Gaussian sources can be distinguished from shape of joint distribution
- Requires going beyond $1^{\text {st }}$ order correlations

$\mathbf{S}(t)=\mathbf{W} \mathbf{X}(t)=\mathbf{A}^{-1} \mathbf{X}(t)$

ICA blind learning algorithm

- "Natural Gradient Infomax"
- Algorithm increments unmixing matrix W, based on feedback of output signals
- Uses nonlinear cross-correlation of "unmixed" signals
- Similar to whitening filter, but with higher order statistics
- Particular update rule derivable from max likelihood and independence assumption
- W adaptation reaches fixed point when outputs are non-linearly decorrelated
- W row vectors have rotated to align axis of distribution
- Output signals are now independent and normalized
- Each weight vector implements projection (to remove other independent sources) and boosting of residual signal to unit normalization

$\underset{\text { (communications) }}{\text { Sub-Gaussian }} f(y)=y^{3}$

Example of MATLAB-simulated ICA operation with $N=4$ antennas

- 4 down-converted waveforms unmixed by ICA
- GSM at $f_{1}=1.5 \mathrm{MHz}$ ($270.8 \mathrm{~kb} / \mathrm{s}$)
- BPSK at $f_{2}=2 \mathrm{MHz}(200 \mathrm{~kb} / \mathrm{s})$
- 16-QAM at $f_{3}=2.5 \mathrm{MHz}$ ($270.8 \mathrm{~kb} / \mathrm{s}$)
- SC-CDMA at $f_{4}=3 \mathrm{MHz}$ (4 users, $200 \mathrm{~kb} / \mathrm{s}$)
- Works as well for $f_{1}=f_{2}=f_{3}=f_{4}$

Input X
Spectrum of Mixed Signals at Antenna 1

Output Y

Spectrum of Recovered QAM16

Spectrum of Recovered SC-CDMA

Motivation of multiplier circuit

- Core multiply-accumulate function $y_{i}=\sum W_{i j} X_{j}$ can be reduced to well understood summation
(Σ) and multiplication ($W_{i j} x_{j}$) opamp-based
 limited by metal lithography and oxidethickness variation across the chip

C2

- Well-understood switched-capacitor realization (dating back to CMOS audiocircuits in the 1980s) enables realization with desirable properties of mismatch and noise compensation

ICA multiply-accumulate (MAC) core

- Conceptual top-level functional block diagram of single-channel, differential multiply-accumulate function with 8 inputs ($x_{j}, j=1 . .8$) and output y_{i}
- Input weights are differential, guaranteed monotonic 13-bit digitally programmable weights $W_{i j}$, matched to within $+/-3 \%$ across process variation and temperature (PVT)
- Signal path gain can be selected to be $1 x$ or $2 x$ by 1 -bit programmable $2^{-n} C_{f}$
- $1 x$ default to preserve 10-bit linearity of signal path
- $2 x$ may be selected to boost ICA core signal amplitude for small angle-separation of inputs.

$-X_{j}+$

Motivation - operation of switched-capacitor multiplier circuit

Effective circuit during the "'sampling phase". Switches S1, S2 are closed and S3 is open. During this phase, the input signal is sampled onto capacitor $\mathrm{C1}$, which develops $V_{\text {in }}$, within the error of the OTA that maintains a virtual small-signal ground at the negative input terminal of the OTA.

Effective circuit during the "amplification phase". Switches S1, S2 are open and S3 is closed.
During this phase, the voltage across capacitor C1 is approximately OV (within the error of the OTA), which causes the charge accumulated in C1 to flow into capacitor C 2 , causing $V_{\text {out }}=(\mathrm{C} 1 / \mathrm{C} 2) V_{\text {in }}$.

Design approach and specification

- Production-quality design across process variation and temperature (PVT)
- Test chip specific LPF and output driver, not relevant on platform IC
- Short design cycle time => maximal schematic and layout reuse
- Available process through MOSIS does not have High Performance Analog Transistors
- Guaranteed linearity (IM3 two-tone tests) better than 63 dB (10-bits) across PVT at 1Vpp
- Input-referred noise no worse than $300 \mu \mathrm{Vrms}$
- Guaranteed channel matching within $+/-3 \%$ across PVT
- Designed to be within $+/-1 \%$ without calibration
- Channel bandwidth to be ${ }^{\sim} 6 \mathrm{MHz}$ nominal
- $<0.5 \mathrm{~dB}$ ripple
- 13-bit weights W_{ij} consisting of sign bit and 12 magnitude bits, no calibration
- Guaranteed monotonic weights
- Segmented C-segmented R DACs, time constant >> $6 \mathrm{MHz}=>$ small $\mathrm{R}=>$ LPF requires large current to establish large output voltage and maintain 63 dB linearity

ICA chip top-level simulation schematic diagram

The linear mixing matrix \mathbf{A} gives complex $R F$ input signals $\mathbf{X}=\mathbf{A S}$
We seek the unknown original complex signals $\mathbf{S}=\mathbf{A}^{-1} \mathbf{X}$
ICA blind-source separates the input signal \mathbf{X} by unmixing the linear combination to give $\mathbf{Y}=\mathbf{W X}$ where \mathbf{W} approximates \mathbf{A}^{-1} and \mathbf{Y} approximates \mathbf{S}
The ICA chip does this unmixing before ADC and DSP

ICA chip $8 \times 8 W_{i j}$ weight matrix in ICA

- Conceptual top-level functional block diagram of $8 \times 8 W_{i j}$ weight matrix in ICA chip core.
- Implementation requires differential, guaranteed monotonic 13-bit (sign bit + 12 magnitude bits) weights $W_{i j}$, for a total of sixty-four (64) digitally programmable weights, matched to within +/- 3\% across PVT.
- The differential digitally programmable matrix weight array is implemented (designed and drawn) on-chip as a segmented 6-bit R (lsb), 6bit C (msb) array.

Eight $\Sigma_{j} W_{i j}$ outputs

Example 4-antenna separation details of HSPICE simulation

- S-inputs, 200 mVpp
- $\quad \mathrm{S} 1 _\mathrm{I}, \mathrm{Q}=2.0 \mathrm{MHz}$
- $\quad \mathrm{S} 2$ I, Q $=2.1 \mathrm{MHz}$
- $\quad \mathrm{S} 3$ _I, Q $=1.5 \mathrm{MHz}$
- $\quad \mathrm{S} 4 _\mathrm{I}, \mathrm{Q}=3.0 \mathrm{MHz}$
- $\phi_{1}=+0^{\circ}, \phi_{2}=+1.3^{\circ}$, $\phi_{3}=-65^{\circ}, \phi_{4}=+80^{\circ}$
- Weight matrix from Test16 MATLAB file

Mixed X-inputs, <= 1Vp-p

- \quad S1_I, Q $=2.0 \mathrm{MHz}$
- S2_I,Q=2.1MHz
- $\quad \mathrm{S} 3$ _I, Q $=1.5 \mathrm{MHz}$
- \quad S4_I, Q=3.0MHz
- $\phi_{1}=+0^{\circ}, \phi_{2}=+1.3^{\circ}$,

Unmixed Y-Outputs, ~300mVp-p

- S1_I, Q=2.0MHz
- $\quad \mathrm{S} 2 _\mathrm{I}, \mathrm{Q}=2.1 \mathrm{MHz}$
- $\quad \mathrm{S} 3 _\mathrm{I}, \mathrm{Q}=1.5 \mathrm{MHz}$
- $\quad \mathrm{S} 4 _\mathrm{I}, \mathrm{Q}=3.0 \mathrm{MHz}$
- $\phi_{1}=+0^{\circ}, \phi_{2}=+1.3^{\circ}$, $\phi_{3}=-65^{\circ}, \phi_{4}=+80^{\circ}$
- Weight matrix from Test16 MATLAB file
- Gain for all paths, 30dB

Transient Response

DFT of first set of four Y outputs

DFT of second set of four Y outputs

4-antenna HSPICE simulation unmixing results

- Optimized weights from MATLAB analytic model $\phi_{1}=+0^{\circ}, \phi_{2}=+1.3^{\circ}$, $\phi_{3}=-65^{\circ}, \phi_{4}=+80^{\circ}$
- 300us transient simulation.
- DFT from 290us to 300us.
- Simulation time is ~ 60 us/hour (wall-time) -- CPU-bound.
- Upper table is Typical transistor, resistor, capacitor corner (TT), 27C, 1.2 V
- Worst-case channel suppression is $-29.14 \mathrm{~dB}$
- Lower table is Slow P, Slow N transistor corner (SSF), Max resistor and Max capacitor corner, 125C, 1.13V (4.9 parts per billion failure rate)
- Worst-case channel suppression is -27.67dB

Channels	Desired Signal Frequency (MHz)	Desired Signal Strength (dB) in DFT	\qquad	Highest Undesired Signal Strength (dB)	Worst-case Suppression (dB)
out0	2	-16.73	3	-45.87	-29.14
out1	2	-16.73	3	-45.87	-29.14
out2	2.1	-16.80	2	-46.17	-29.37
out3	2.1	-16.80	2	-46.17	-29.37
out4	1.5	-16.69	3	-46.18	-29.49
out5	1.5	-16.69	3	-46.18	-29.49
otu6	3	-16.91	1.5	-55.17	-38.26
out7	3	-16.91	1.5	-55.17	-38.26

	Desired Signal Frequency (MHz)	Desired Signal Strength (dB) in DFT	Largest undesired Signal Frequency (MHz)	Highest Undesired Signal Strength (dB)	Worst-case Suppression (dB)
out0	2	-17.07	1.5	-46.63	-29.55
out1	2	-17.07	1.5	-46.63	-29.55
out2	2.1	-17.15	3	-47.30	-30.15
out3	2.1	-17.15	3	-47.30	-30.15
out4	1.5	-17.00	3	-44.67	-27.67
out5	1.5	-17.00	3	-44.67	-27.67
otu6	3	-17.29	2.1	-54.19	-36.90
out7	3	-17.29	2.1	-54.19	-36.90

Typical HSPICE two-tone linearity test in ICA chip signal-path simulation

- Includes constant- g_{m} bias circuit, input 6-pole filter, and analog output driver.
- The output driver drives a differential load of 600 -ohms with 15 pF of capacitive load from each of the plus and minus paths to ground. The above load models the signal-load seen on the printed-circuit board (PCB).
- The input common-mode voltage (vcm) tracks changes in the supply-voltage.
- Simulation results recorded for different transistor process corners of typical (TT), worst-case slow (SSF) and worst-case fast (FFF); resistor corners of typical, max resistance and min resistance; capacitor corners of typical, maximum capacitance and minimum capacitance, junction temperature of $27^{\circ} \mathrm{C}$ (typical), $\min \left(-40^{\circ} \mathrm{C}\right)$ and $\max \left(125^{\circ} \mathrm{C}\right)$ and supply voltages of 1.13 V (minimum), 1.2 V (typical) and 1.26 V (maximum).
- DFT results (68.19 dB linearity) of two-tone test ($500 \mathrm{mVp}-\mathrm{p}$ 2.5 MHz and 3 MHz) for the typical-typical (TT) process corner (transistors, resistor and capacitor) at $27^{\circ} \mathrm{C}$ and $V_{D D}=1.2 \mathrm{~V}$.

- DFT results (71.57dB linearity) of two-tone test ($500 \mathrm{mVp}-\mathrm{p}$ 2.5 MHz and 3 MHz) for the SSF transistor corner, -3 sigma resistor and capacitor corner at $125^{\circ} \mathrm{C}$ and VDD $=1.13 \mathrm{~V}$.

Block diagram of basic ICA chip test-bed

Notes: SMA connectorized cable used in initial bench top testing.

Block diagram of ICA chip

Notes: digital data link from ADC to FPGA is $8 \times 125 \mathrm{Mb} / \mathrm{s}=1 \mathrm{~Gb} / \mathrm{s}$. ADC DAC-threshold update rate is 500 kHz max. with SPI clock at 250 MHz . ICA weight-update rate is 100 kHz max. with SPI clock at 250 MHz .
The $E N_{\text {ADC }}$ logic control bit set Hi in ADC serial interface selects the per-channel $125 \mathrm{MS} / \mathrm{s}$ 1-bit ADC digital output and ADC clock output. The $\mathrm{EN}_{\mathrm{ADC}}$ logic control bit set Lo in ADC serial interface selects analog differential outputs and powers down the ADC clock output path. This is the default setting on power-up.

Timing: 8-b DAC 1-b ADC 500 kHz update rate and 13-b ICA weight update rate at 100 kHz (100 updates per millisecond)

8-b DAC 1-b ADC update

```
8bx8=64b at CLKDAC=250MHz
takes tDAC=0.256us
```

13-b ICA weight update
$13 \mathrm{bx} 32=832 \mathrm{~b}$ at CLKWUD $=250 \mathrm{MHz}$
takes tWUD=3.328us

3.328 us for 64×13-bit ICA weight updates at 250 MHz

10us (1250 ADC clock cycles at 125 MHz) for maximum 100kHz ICA weight update rate
Notes: digital data link from ADC to FPGA is $8 \times 125 \mathrm{Mb} / \mathrm{s}=1 \mathrm{~Gb} / \mathrm{s}$. ADC DAC-threshold update rate is 500 kHz max. with SPI clock at 250 MHz . ICA weight-update rate is 100 kHz max. with SPI clock at 250 MHz .
The $E N_{\text {ADC }}$ logic control bit set Hi in ADC serial interface selects the per-channel $125 \mathrm{MS} / \mathrm{s}$ 1-bit ADC digital output and ADC clock output. The $E N_{A D C}$ logic control bit set Lo in ADC serial interface selects analog differential outputs and powers down the ADC clock output path. This is the default setting on power-up.

ICA chip in package

ICA chip pinout

Test setup

ICA board
+1.2 digital, GND, +1.2V analog

ICA board
+1.2 analog, GND, +1.2V digital

Initial analog tests

- On power-up the ICA chip loads an internal, default, diagonal weight matrix
- Each analog channel receives maximally weighted diagonal weight, with signbit=1. This means that a channel's output is an inverted version of it's input
- Analog signals passing through the ICA chip can be measured if EN_ADC reset is pulsed from $\mathrm{Hi}=1 \mathrm{~V}$ to $\mathrm{Lo}=0 \mathrm{~V}$ as shown in the following diagram
- EN_ADC evaluation time of between 1 and 5 milli-seconds, which is governed by the drift of the dc-operating point established during the reset-phase of the switched capacitor circuit implementing the multiplier.
- EN_ADC rise and fall times between 1 ns and 10 ns .
- EN_ADC reset time between 0.5 us and 1 us.

Initial analog tests

Channel 3 insertion loss
-3 dB at 6.5 MHz with input filter on (frequency sweep from 1 MHz to 10 MHz) -3 dB at 15.4 MHz with input filter off (frequency sweep from 1 MHz to 30 MHz)

Configuration: input-board+ICA-board+output-board -2 dBm input, $\mathrm{EN} _$ADC has $\mathrm{Hi}=1 \mathrm{~V}, \mathrm{Lo}=0 \mathrm{~V}, 200 \mathrm{~Hz}, 0.7$ us pulse width Lo, 8.4 ns rise and fall

Bandwidth Measurement, $1 \mathrm{MHz}-10 \mathrm{MHz}$, Input ch power $=-2 \mathrm{dBm}, \mathrm{f}_{\text {ADC_EN }}=200 \mathrm{~Hz}$, filter on

Bandwidth Measurement, $1 \mathrm{MHz}-30 \mathrm{MHz}$, Input ch power $=-2 \mathrm{dBm}, \mathrm{f}_{\text {ADC_EN }}=200 \mathrm{~Hz}$, filter off

Initial analog tests

- Channel 3 insertion loss over frequency range $0.1 \mathrm{MHz}-30 \mathrm{MHz}$
- $f_{-3 \mathrm{~dB}}=6.5 \mathrm{MHz}$ with 6-pole Butterworth ON
- $f_{-3 \mathrm{~dB}}=15.4 \mathrm{MHz}$ with filter OFF
- Configuration: input-board+ICA-board+output-board
- -2 dBm input, EN_ADC has $\mathrm{Hi}=1 \mathrm{~V}, \mathrm{Lo}=0 \mathrm{~V}, 1 \mathrm{kHz}, 0.7$ us pulse width Lo, 8.4 ns rise and fall

Initial analog filter gain matching, <0.7\% uncalibrated

Configuration: input-board+ICA-board+output-board -3 dB at 6.5 MHz with 6-pole Butterworth input filter on (frequency sweep from 0.1 MHz to 7.0 MHz) Filter matching $+/-\sigma=+/-0.0291 \mathrm{~dB}(+/-0.67 \%) 0.1 \mathrm{MHz}-7 \mathrm{MHz}$ and $+/-\sigma=+/-0.0198 \mathrm{~dB}(+/-0.46 \%) 0.1 \mathrm{MHz}-2 \mathrm{MHz}$ -2 dBm input, $\mathrm{EN} _$ADC has $\mathrm{Hi}=1 \mathrm{~V}, \mathrm{Lo}=0 \mathrm{~V}, 1 \mathrm{kHz}, 0.7$ us pulse width Lo, 8.4 ns rise and fall Note: Close to measurement instrument resolution 0.01 dB

Initial analog tests

Channel 3 compression
0.1 dB compression at 1 MHz occurs at input power 3.5 dBm with input filter on 0.1 dB compression at 1 MHz occurs at input power 4.5 dBm with input filter off Configuration: input-board+ICA-board+output-board
EN_ADC has $\mathrm{Hi}=1 \mathrm{~V}$, Lo=0 V, $200 \mathrm{~Hz}, 0.7$ us pulse width Lo, 8.4 ns rise and fall

Filter ON, Center Frequency 1 MHz

Filter OFF, Center Frequency 1 MHz

ICA programming

- Confirmed programming at 250 MHz ICA Clock Frequency (SCK_ICA)
- 891 bits programmed in 3.564us
- Most initial experiments performed using 5 MHz clock
- SO_ICAP and SO_ICAM are the differential digital outputs of ICA data (891 bits)
- Data is shifted in when EN_ICA is low
- ICA serial-data is effected after the first EN_ADC that occurs after EN_ICA goes high

Initial Test 9 measurement, 4 antennas, unmixing single tone

- ICA matrix weights are for the Test 9 configuration at frequencies $3.5 \mathrm{MHz}, 4.0 \mathrm{MHz}$, 4.5 MHz and 5.0 MHz and phase angles $+/-60^{\circ}$ and $+/-20^{\circ}$
- 60.3 dB suppression in unmixed spectrum measurement of single tone at 4.0 MHz with 18 dB of output gain
- Noise background is from unfiltered EN_ADC switching
- EN_ADC has $\mathrm{Hi}=1 \mathrm{~V}, \mathrm{Lo}=0 \mathrm{~V}, 200 \mathrm{~Hz}, 0.7$ us pulse width Lo, 8.4 ns rise and fall

Initial Test 9 measurement, 4 antennas, 4 tones mixed signals

Frequencies, $f_{1}=3.5 \mathrm{MHz}, f_{2}=4.0 \mathrm{MHz}, f_{3}=4.5 \mathrm{MHz}$ and $f_{4}=5.0 \mathrm{MHz}$

Initial Test 9 measurement, 4 antennas, 4 tones unmixed signals

Initial Test 9 measurement, 4 antennas, 4 tones unmixed signals

Removal of noise from EN_ADC reset signal

- As much as 20 dB noise background is from unfiltered EN_ADC switching that can be removed in time-domain before calculation of spectrum using windowed FFT
- EN_ADC has $\mathrm{Hi}=1 \mathrm{~V}$, Lo=0 V, $200 \mathrm{~Hz}, 0.7$ us pulse width Lo, 8.4 ns rise and fall

Test 9 measurement, 4 antennas, 4 communication waveforms with different center frequencies

Unmixed Signals YYadc, $\phi_{1}=60^{\circ}, \phi_{2}=-60^{\circ}, \phi_{3}=20^{\circ}, \phi_{4}=-20^{\circ}, f_{1}=1.5 \mathrm{MHz}, \mathrm{f}_{2}=2 \mathrm{MHz}, \mathrm{f}_{3}=2.25 \mathrm{MHz}, \mathrm{f}_{4}=3.25 \mathrm{MHz}$ $V p p_{1,2,3,4}=80 \mathrm{mV}(-18 \mathrm{dBm})$, ICA Gain $=18 \mathrm{dBm}$

Test 9 measurement, 4 antennas, 4 communication waveforms with different center frequencies

Unmixed Signals YYadc, $\phi_{1}=60^{\circ}, \phi_{2}=-60^{\circ}, \phi_{3}=20^{\circ}, \phi_{4}=-20^{\circ}, f_{1}=1.5 \mathrm{MHz}, \mathrm{f}_{2}=2 \mathrm{MHz}, \mathrm{f}_{3}=2.25 \mathrm{MHz}, \mathrm{f}_{4}=3.25 \mathrm{MHz}$ $V p_{1,2,3,4}=80 \mathrm{mV}(-18 \mathrm{dBm})$, ICA Gain=18dBm

Original GSM

Original QAM16

Original SC-CDMA

Recovered GSM

Recovered BPSK

Recovered QAM16

Recovered SC-CDMA

Test 9 measurement, 4 antennas, 4 communication waveforms with same center frequency (overlapping spectra)

Test 9 measurement, 4 antennas, 4 communication waveforms with same center frequency

Unmixed Signals YYadc, $\phi_{1}=60^{\circ}, \phi_{2}=-60^{\circ}, \phi_{3}=20^{\circ}, \phi_{4}=-20^{\circ}, f_{1}=f_{2}=f_{3}=f_{4}=1 \mathrm{MHz}$ $V p_{1,2,3,4}=40 \mathrm{mV}(-24 \mathrm{dBm})$, ICA Gain $=18 \mathrm{dBm}$

Recovered SC-CDMA

4 antennas, 4 tones, minimum suppression ratio as function of phase angle, $+/-\Delta^{\circ}$

- Motivation for testing using small phase angles, ϕ, is the relationship between angle of arrival θ, separation between adjacent antennas L, and baseband frequency f is $\phi=$ $1.2 \times f(\mathrm{MHz}) \times L(\mathrm{~m}) \times \sin (\theta)$. Assuming $f=10 \mathrm{MHz}$ and a typical tablet device with $L=0.2 \mathrm{~m}$ (8 inches), then ϕ scales to +/- 2.4 .
- ICA matrix weights are for frequencies $1.5 \mathrm{MHz}, 2.0$ $\mathrm{MHz}, 2.5 \mathrm{MHz}$ and 3.0 MHz and phase angles $+/-60^{\circ}$ and $+/-\Delta^{\circ}$
- Measure 18 dB suppression at $\Delta=0.5^{\circ}$ with or without 18 dB of output gain

Minimum suppresion of tones $\phi_{1}=60^{\circ}, \phi_{2}=-60^{\circ}, \phi_{3}=+\Delta^{0}, \phi_{4}=-\Delta^{0}$,

Design and measured accomplishments of 8-channel ICA test chip

Criterion	Requirement	Design result	Measured
Gain matching	+/- 3\% across PVT	Designed to better than $+/-3 \%$ across PVT without calibration	Better than $+/-0.7 \%$
$\begin{aligned} & \text { Channel } \\ & \text { (LPF+ICA+Driver) BW } \end{aligned}$	6.5 MHz across PVT	Design meets specification	LPF 6.5 MHz
Channel (LPF+ICA+Driver) linearity	Better than 63dB across PVT per two-tone test	Design meets specification. 68.19dB at TT/27C/1.2V	68 dB
ICA weights	$\begin{aligned} & \text { 13b (sign bit +12 } \\ & \text { magnitude bits) } \end{aligned}$	Design meets specification	
ICA weight monotonicity	Guaranteed monotonic	Design meets specification.	
Maximum input signal	1 Vpp	Design meets specification	0.1 dB compression
Input referred noise	< 300uVrms	288uVrms	430 uVrms including input and output boards
1b ADC sampling rate	$125 \mathrm{MS} / \mathrm{s}$	Design meets specification. 8b DAC threshold mismatch is within 1\%	
ICA weight update rate	Max. 100 kHz	Design meets specification	Programming 250 MHz
1b ADC 8-b DAC update rate	Max. 500 kHz	Design meets specification	

Summary

- Successful initial laboratory test and validation of basic closed-loop functionality of ICA chip implemented in GF65LPE ($3.8 \mathrm{~mm} \times 5.5 \mathrm{~mm}$)
- Real-time 8 input, 8 output, programmable 8×8 matrix multiply to un-mix 4 complex IQ baseband signals
- 64 matrix elements, each digitally programmable to $13-\mathrm{b}$ in total time of 3.328 us at $250 \mathrm{Mb} / \mathrm{s}$ and with 100 kHz update rate
- Complex ICA can be performed on 4 antenna signals with $>40 \mathrm{~dB}$ suppression between unmixed signals
- Overall 68 dB chip linearity (11b) with no calibration and $f_{-3 \mathrm{~dB}}=15.4 \mathrm{MHz}$ bandwidth per channel
- $f_{-3 \mathrm{~dB}}=30.8 \mathrm{MHz} \mathrm{I-Q}$ bandwidth per antenna
- 0.1 dB compression at 1 MHz occurs at input power 4.5 dBm (1.06 Vpp)
- Core ICA function is $0.7 \mathrm{~nJ} / \mathrm{MAC}$
- On-chip selectable 6-pole low-pass Butterworth input filter with $f_{-3 \mathrm{~dB}}=6.5 \mathrm{MHz}$ and gain 0.7% matching with no calibration
- On-chip selectable $125 \mathrm{MS} / \mathrm{s}$ 1-b ADC with 8b DAC reference level programed in 0.256 us at $250 \mathrm{Mb} / \mathrm{s}$ and with 500 kHz update rate

Team

- USC
- USC lead: Tony Levi
- Mixed signal circuit design: Bindu Madhavan and Edward Lee
- Testbed: Joshua Zusman
- SAIC/Leidos
- SAIC (Leidos) lead: Dennis Braunreiter (Douglas Miller)
- Algorithm development: Don Finnel (James Sifferlen)

Backup

System architecture

Digital Path

- Integrated selectable oversampled 1-bit ADC with programmable 8-bit DAC for threshold and selectable LPF
- 1-bit ICA processing
- ICA algorithm and gain adjustment
- Direction of arrival (DOA) algorithms
- Basic tracking algorithms
- $15 \mathrm{MHz} \mathrm{BW}, 60 \mathrm{~dB}$ dynamic range, 13 bit programmable matrix weights
- Selectable off-chip ADC and LPF bypass

Conventional digital receiver processing versus ICA chip

Scaling about the reference point in 65 nm CMOS

ADC power scaling linear with sample rate using
interleaving to increase 1-bit is $2 x$ power plus 20\%
premium for calibration
o Analog Devices research 14b, $80 \mathrm{MS} / \mathrm{s}, 35.1 \mathrm{~mW}$ (with ref) in 65nm CMOS, ISSCC 2013
LPF power increases linearly with number of poles and 20\% premium for matching and calibration per pole
o 6-pole LPF, 0.5 dB ripple, 25 mW in 65 nm CMOS
DSP requires Nop with Jop (J/op) at the sample rate
o DSP 10pJ/op
LA (linear amplifier) power is fixed in BW and dynamic range
o 86dB linearity, 12 mW in 65 nm CMOS

Digital receiver replacing the ICA function (<1mW with additional design time) with 10-11b dynamic range and 20dB SNR on minimum signal requires:
ADC (14b, 73MS/s), 6-pole LPF, LA, DSP $=80 \mathrm{~mW}$ (note 6-pole LPF is power optimum for this case!) Compared to CLASIC ICA, 6-pole LPF, 8 b ADC $=<1 \mathrm{~mW}+25+0=<26 \mathrm{~mW}$ (we only need $8 \mathrm{~b}(85 \mathrm{uW}$) to 10b
($<0.6 \mathrm{~mW}$) ADC because signals are separated by ICA)
Because the LPF is common it could be factored out in the comparison, in which case:
Digital receiver ADC (14b, 73MS/s, 32.02mW), LA (12mW), DSP $(11.68 \mathrm{~mW})=55 \mathrm{~mW}$
Compared to CLASIC ICA ($<1 \mathrm{~mW}$ with additional design time), 8b ADC (85uW) $=<1 \mathrm{~mW}+85 \mathrm{u}=1 \mathrm{~mW}$ giving approximate ratio 55

Why ICA in analog? Low power small signal demodulation against jamming

- Conventional Digital Receivers (CDR) susceptible to jammer interference
- Sum of all received signals MUST be digitized first
- Blocking of jammer signal can only occur AFTER the ADC
- The ICA chip spatially blocks jammers BEFORE the ADC
- Allows much relaxed ADC specification
- Minimum signal output SNR (circuit) $=20 \mathrm{~dB}$

- Jammer EXAMPLE 5-6 bit Savings:

- ICA chip linearity is >10-b (11-b) over 10 MHz
- Resolving small signal and jammer requires CDR to have 10-b linearity for ICA function, plus $20 \mathrm{~dB}=3-\mathrm{b}$ SNR for demodulation
- CDR LPF must be sampled at higher rates than Nyquist to prevent aliasing of interference OR additional bits to reject aliased jammer
- Filter attenuation $=-120 \mathrm{~dB} /$ decade (6 pole filter) -> 24 dB attenuation at Nyquist
- Jammer sampled at Nyquist folds over additional aliased signal power on top of small signal
- Need 1-2 additional bits to resolve small signal for higher power jammer

Continuous Spectrum Before Sampling

$\mathrm{f}_{\mathrm{si}}=$ signal frequency

Continuous Spectrum After ICA chip

CDR Spectrum After Sampling

-= Aliased Jammer Power

DSP Requirements

- DSP algorithms performed on low power digital hardware
- Required processing
- Weight update to ICA
- Direction of arrival DOA calculation
- Weight update processing rate = 10 kHz (100kHz possible)

Low-Power DSP

Analog

- ~10 mW Ultra low power DSP TI part TMSC320C5534

	Weight Update	DOA
Additions	257	80
Multiplies	1027	192
MACs	1728	0
Divisions	2	12
Miscellaneous	83	0
Total Operations	3097	284
Target Processor Efficiency	50	50
Update Period (microseconds)	100	1000
Millions of Ops Per Second	61.94	0.568
Desired Processor Clock Rate	$\mathbf{6 2 . 5 0 8}$	\square

Design accomplishments of 8-channel ICA test chip

Criterion	Requirement	Design result
Input LPF out-of-band supression	50-dB	-50dB BW between 12MHz and 26 MHz across PVT.
Gain Matching	+/- 3\% across PVT.	Designed to better than $+/-3 \%$ across PVT without calibration.
BW Matching	+/- 3\% across PVT.	Designed to better than +/-3\% across PVT without calibration.
Channel (LPF+ICA+Driver) BW	at least 4.6875 MHz across PVT. Allowed to vary +/- 30\% across PVT while maintaining matching.	```Design meets specification. BW between 4.73MHz (SSF/Rmax/Cmax/125C/1.13V) and 10.17MHz (SSF/Rmin/Cmin/-40C/1.26V).```
Channel (LPF+ICA+Driver) linearity	Better than 63dB across PVT per twotone test.	Design meets specification. 68.19 dB at TT/27C/1.2V, worst case is 63.39 dB at SSF/Rmax/Cmax/-55C/1.13V).
ICA weights	13-bit (sign bit+ 12-magnitude bits)	Design meets specification
ICA weight monotonicity	Guaranteed monotonic	Design meets specification
ICA weight matching	+/- 3\% across PVT.	Designed to better than +/-3\% across PVT without calibration.
Maximum input signal	1Vp-p	Design meets specification
Minimum input signal	$1 \mathrm{mVp}-\mathrm{p}$	Design meets specification
Input-referred noise	<= $300 \mu \mathrm{Vrms}$	$288.1 \mu \mathrm{Vrms}$ at TT/27C/1.2V. Exceeds target by being between $353.4 \mu \mathrm{Vrms}$ and $373.8 \mu \mathrm{Vrms}$ at 125 C in eight (8) out of total 39 corners. Occurs only 1:10M.
1-b ADC sampling rate	125 MHz	Design meets specification. 8-bit DAC threshold mismatch is within +/-1\% across PVT. 1-bit comparator simulated with 0.5 V to 0.9 mV differential input pattern sampled at 125 MHz passes MC. with DAC at min and max.
ICA weight and 1-bit ADC 8-bit DAC update settling time	$<0.5 \mu \mathrm{~s}$	Design meets specification
ICA weight update rate	maximum 100 kHz	Design meets specification
1-b ADC 8-bit DAC update rate	maximum 500 kHz	Design meets specification

PVT is all process corners, $1.2 \mathrm{~V}+/-5 \%,-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ junction temperature

Bring up

Input board:
+3.3 V (0.32 A when not connected, 0.45 A when connected to ICA board)
-1.7 V (0.28 A when not connected, 0.24 A when connected to ICA board)

ICA board:
Power up analog voltage first followed by digital
+1.2 V analog (0.26 A [312 mW] filter OFF, 0.42 A [504 mW] with filter ON)
+1.2 V digital (0 A)

Output board:
+5V (0.14 A)

- 5 V (0.14 A)

