Coherent control of non-Markovian photonresonator dynamics

A.F.J. Levi University of Southern California

Presented at the Paul Scherrer Institute, March 5, 2018

"Coherent control of photons"

- Coherent
 - Keep track of amplitude, phase, and maintain precise timing within a characteristic length or time scale
- Control
 - Methods to modify the behavior of a system with one or more inputs
- Photon
 - A wavelike particle of energy that produces a click on a detector
- ... and, there may be additional opportunities with *quantum* aspects of photons
 - Quantum
 - No accepted measure of "quantumness"
 - Classical analogies often exist (e.g. the coherent oscillator state) except for:
 - Wave-particle duality
 - Identical indistinguishable particles
 - Linearity
 - Entanglement

Motivation: Demonstrate a path to *intuitive* control of transient photon dynamics (in quantum systems)

Modified from Rabitz et al., 2010: General unifying features of controlled quantum phenomena: https://arxiv.org/pdf/1003.3506

The single photon wave function

- Single photons in a sourceless medium obey the equation $i\hbar\partial_t\psi_\sigma(\mathbf{r},t) = \hbar c\sigma \nabla \times \psi_\sigma$ where σ is the helicity of the photon.
- If $\psi_{\sigma} = \left(\frac{\epsilon_0}{2}\right)^{1/2} (E + i\sigma cB)$, then the above equation yields Ampere's and Faraday's Laws, i.e. Maxwell's equations (with the additional condition that the field is divergenceless).
- In other words, the real and imaginary parts of the photon wave function obey Maxwell's equations.
- Thus all methods used for solving classical electromagnetic problems can be used for the *single* photon (e.g. matrix propagation method).

The single photon wave function

- It is (*now*) believed that a single photon wave function may be used to describe photon *energy density* $U(x,t) = |\Psi(x,t)|^2$
 - Studied theoretically, including
 - I. Bialynicki-Birula, Acta Phys. Pol. 86, 97 (1994)
 - B. J. Smith and M. G. Raymer, New Journal of Physics **9**, 414 (2007)
- Unitary dynamics of photon wave function propagating in x-direction in lossless dielectric media may be modeled as phase-coherent sum of linearly polarized planewave basis functions, each of amplitude a_n and oscillating at frequency ω_n

$$\Psi(x,t) = \sum_{n} a_{n} \psi_{n}(x) e^{-i\omega_{n}t}$$

• The lossless dielectric material may be characterized by μ_r and ε_r , and ψ_n satisfies $\nabla \times ((\mu_0 \mu_r)^{-1} \nabla \times \psi_n(x)) - \omega_n^2 \varepsilon_0 \varepsilon_r \psi_n(x) = 0$ with boundary conditions between region 1 and 2 at position x_0 such that

$$\psi_n\big|_{x=x_0-\delta}=\psi_n\big|_{x=x_0+\delta}$$

 $\frac{1}{\mu_{r1}} \frac{\partial \psi_n}{\partial x} \bigg|_{x=x_0-\delta} = \frac{1}{\mu_{r2}} \frac{\partial \psi_n}{\partial x} \bigg|_{x=x_0+\delta}$

and refractive index $n_{\rm r} = \sqrt{\mu_{\rm r}} \sqrt{\varepsilon_{\rm r}}$

- Solve in space and time and assume photon coherence time, $\tau_{\rm Coh}$, greater than any other characteristic time

The Fabry-Perot optical resonator

- Example dielectric structure: Two quarter-wave dielectric mirrors with $n_r=2.5$ spaced $L_c=2\lambda_0$ apart creates Fabry-Perot optical *resonator* that is *coupled to the continuum*
- Resonant wavelength λ_0 =1500 nm, ω_0 =2 π/τ_0 =2 π x200 THz, τ_0 =5 fs
- Resonant photon energy E_0 =0.826 eV
- $Q=\omega_0/\gamma$, Lorentzian spectral FWHM= \hbar/τ_Q , $\gamma=1/\tau_Q$
- Classical time-domain response is e^{-t/τ_Q} and τ_Q is resonant state lifetime
- Resonator round-trip time defined as $\tau_{\rm RT}=2\pi/\Delta\omega=1/\Delta f$ where Δf is the frequency spacing between adjacent spectral transmission peaks

6

Reflectivity of single quarter-wave dielectric mirror

- Example dielectric structure: Single quarter-wave dielectric mirror with $n_r=2.5$
- Resonant wavelength λ_0 =1500 nm, ω_0 =2 π/τ_0 =2 π x200 THz, τ_0 =5 fs
- Resonant photon energy $E_0=0.826 \text{ eV}$
- Transmission is a *slowly* varying function of photon energy, ^{1.2}

$$t^{2} = \frac{1}{1 + \left(\frac{k_{1}^{2} - k_{2}^{2}}{2k_{1}k_{2}}\right)^{2} \sin^{2}(k_{2}L)}$$

On resonance $k_{1} = \frac{2\pi}{\lambda_{0}}$, $k_{2} = \frac{2\pi n_{r}}{\lambda_{0}}$, $L = \frac{\lambda_{0}}{4n_{r}}$, so that

$$\frac{1}{1 + \left(\frac{1 - n_{\rm r}^2}{2n_{\rm r}}\right)^2}$$

- System requires $t^2 + r^2 = 1$
- $t^2 = r^2 = 1/2$ when $n_r = 1 + \sqrt{2}$ For field $t = \sqrt{t^2}$ and $r = \sqrt{r^2}$
- *t* and *t*² less dependent on photon energy as:

$$m_{\rm r} \rightarrow 1, t^2 \rightarrow 1$$

 $m_{\rm r} \rightarrow \infty, t^2 \rightarrow 0$

 π phase shift on reflection from semi-infinite slab, ψ_{r}

Transient response of single-photon (or classical E&M) pulse incident on Fabry-Perot cavity at resonance

- Rectangular photon pulse with center frequency that is *on resonance at* wavelength λ_0 =1500 nm, ω_0 =2 π/τ_0 =2 π x200 THz, τ_0 =5fs
- Quarter-wave $(\lambda_0/4n_r)$ dielectric mirror with $n_r=2.5$, cavity length $L_c=15\lambda_0$, cavity round-trip time $\tau_{\rm RT}=2\pi/\Delta\omega=30\tau_0=150$ fs
- Q=193, τ_Q=Q/ω₀=153fs

 $\tau_0 = 5 \text{fs}$

 $\tau_{\rm p}$ =1432fs $\tau_{\rm RT}$ =150fs

 $\tau_{\rm Q}$ =153fs

Optical resonator: λ_0 =1500nm, E_0=0.827eV, n_r=2.5, L_C=15\lambda_0, E_{spread}=0.207eV, L_0=286.5\lambda_0 20 Rectangular photon pulse of length $L_{\rm P}$ =286.5 $\lambda_{\rm O}$ ($\tau_{\rm p}$ =1432fs) and center frequency f_0 = 200 THz 15 $|\psi(x,t)|^2$ (τ_0 =5fs) propagating from left to right 10 5 0 200 1000 400 600 800 1200 Position, x (um) 3 Refractive index, n_r Fabry-Perot dielectric resonator, $L_{\rm C}$ =15 λ_0 , $\tau_{\rm RT}$ =150fs, $\tau_{\rm O}$ =153fs 0 200 400 600 800 1000 1200 Position, x(um)

Transient response of single-photon pulse incident on Fabry-Perot cavity at resonance

• When photon round-trip time in resonator τ_{RT} is comparable to envelope response time τ_{Q} it is possible to probe the internal (ring-down) structure of the resonator

Transient response of single-photon pulse incident on Fabry-Perot cavity at resonance

Transient response of single-photon pulse incident on Fabry-Perot cavity at resonance

- Multiple cavity round-trip times required to build-up steady-state behavior
- Rectangular photon pulse with center frequency that is on resonance has characteristic transient reflection at leading and trailing edge
 - Reflection depends on frequency components contributing to pulse shape
 - Reflection always greater than zero for pulse

Optical resonator: λ_0 =1500nm, E $_0$ =0.827eV, n = 2.5, L $_C$ =15 λ_0 , T $_0\omega_0$ =900, E $_{spread}$ =0.207eV

Burst of reflected light from trailing edge of pulse

Burst of reflected light from leading edge of pulse

No reflected light at resonant wavelength

Transient response of single-photon pulse incident on Fabry-Perot cavity at resonance

• Calculated transmitted single-photon energy density, $|\psi(x_R, t)|^2$ at $x_R = 742.8 \mu m$

Experimental validation using Fabry-Perot resonator in waveguide

- Because equations governing single-photon wave function evolution are similar to the Helmholtz equation, experiments using classical electromagnetic resonators can validate qualitative behavior.
- Example:
 - Resonant frequency, f_0 =15.234 GHz (E_0 =63 µeV)
 - Measured permittivity of teflon, ε_r =2.050
 - Measured loss tangent, δ =0.0005

Experimental validation using Fabry-Perot resonator in waveguide

- Measured transmitted electromagnetic energy density in time-domain U(t) ($|mV|^2$ into 50 Ω)
- Resonant frequency, f_0 =8.0620 GHz (E_0 =33 µeV)
 - 1/25,000 scale reduction in frequency from optical to RF
- 3 quarter-wave pair DBR in teflon
- Round-trip time in resonator $\tau_{\rm RT}$ =12 ns
- Resonator Q=582 corresponds to $\tau_{\rm Q}$ =11.5 ns (red curve)

• Long pulse time $\tau_p = 230 \text{ ns} \gg \tau_{RT}$, τ_Q

Uncontrolled short single-photon pulse in cavity ring-down

•

resonances is $\Delta \omega = \pi c / L_c n_r$

15

Uncontrolled single-photon cavity ring-down

Experimental validation using Fabry-Perot resonator in waveguide

- Can also probe the internal structure of the Fabry-Perot resonator using *short* electromagnetic pulse time τ_p =7 ns < $\tau_{\rm RT}$, $\tau_{\rm Q}$
- Round-trip time in resonator $\tau_{\rm RT}$ =13.7 ns
- Resonator Q=633 corresponds to $\tau_{\rm Q}$ =12.5 ns (red curve)
- RF switch rise time is 2 ns
- Measured transmitted electromagnetic signal in time-domain $|\rm mV|$ into 50 Ω

Coherent control of *transient dynamics*

- Zero-energy ground-state is a *guaranteed* control point
- Question: How do you *stop* a bell ringing ?
 - The "ringing bell" could be *excitations* of a molecule, a crystal, a device, ...

Coherent control of *transient dynamics*

- Question: How do you *stop* a bell ringing ?
- Answer: You hit it ! (... in a *very* controlled and precise way)

Control field generator

System

Controlled single-photon zero cavity ring-down

pulse energy

density

Space

 Formal control methods replaced by *intuitive* raytracing of *resonant* part of photon field

•

Controlled single-photon zero cavity ring-down

Transmitted single-photon pulse energy density (cancellation of ring-down)

 $au_0 = 5 \text{ fs}$ $au_p = 80 \text{ fs}$ $au_{RT} = 150 \text{ fs}$ $au_Q = 153 \text{ fs}$

21

Resonator energy density output as function of control pulse energy density

Coherent control of single-photon resonator output pulse using control pulse

- Better than 1:10⁴ cancellation using simple control pulse protocol
- Cancellation of residue requires better control pulse match to Fabry-Perot transfer function or slower (smaller bandwidth) operation

Experimental validation using Fabry-Perot resonator in waveguide

 f_0 = 8 GHz, $\tau_{\rm Coh}$ = 1 s, τ_0 = 125 ps, $\tau_{\rm p}$ = 7 ns, $\tau_{\rm RT}$ = 13.7 ns, $\tau_{\rm Q}$ = 12.5 ns

- Coherent control of resonator *short* output pulse using single *short* control pulse
- Short electromagnetic pulse of width $\tau_{\rm p}$ =10 ns < $\tau_{\rm RT}$, $\tau_{\rm Q}$
- Round-trip time in resonator $\tau_{\rm RT}$ =13.7 ns
- Resonator Q=633 corresponds to $\tau_{\rm Q}$ =12.5 ns (red curve)
- Measured transmitted electromagnetic signal in time-domain |mV| into 50 Ω

Coherent control of single-photon resonator output pulse using one backward control pulse

Coherent control of single-photon resonator output pulse using one backward control pulse

Transmitted photon energy density as single pulse

 $\tau_0 = 5 \text{ fs}$ $\tau_p = 80 \text{ fs}$ $\tau_{\text{RT}} = 150 \text{ fs}$ $\tau_{\text{Q}} = 153 \text{ fs}$

Backward propagating control pulse

Coherent control of single-photon resonator output pulse using two backward control pulses

Coherent control of single-photon resonator output pulse using two backward control pulses

Coherent control using one forward and one backward control pulse (or a very small pulse can control two large pulses)

Incident photon

pulse energy Space

density

- Two pulses reflected with *no* ring-down
- Note small energy in backward propagating control pulse

Coherent control using one forward and one backward control pulse

30

Coherent control using one forward and two backward control pulses

Incident photon

pulse energy Space

density

- propagating control pulses incident on resonator
 Single pulse transmitted and single pulse reflected
- Single pulse transmitted and single pulse reflected with *no* ring-down

Coherent control using one forward and two backward control pulses

Coherent control of single-photon resonator output pulses using *multiple* control pulses

- Lead pulse and three control pulses incident on resonator
- Three identical pulses transmitted and dual pulse reflected with *no* ring-down

Coherent control of single-photon resonator output pulse using *three* control pulses

Geometric series using coherent control pulses to *confine* photon energy density in resonator

|eⁱ∕r| >1.

Coherent control

Markovianity measure D(t) of single photon

- System (defined as some region of domain) coupled to continuum at $\pm\infty$
- Unitary evolution of initial state eventually dissipates
- Define spatial region A in domain and consider freely propagating photon pulse through this region
- Under these conditions one may expect any measure of Markovianity in region A to indicate Markovian behavior
 - Information leaks out of region A as the photon energy density decays into the continuum

Hilbert-Schmidt measure D(t) and Markovianity

 Two initially non-interacting (non-overlapping) photon pulses with unitary evolution and initial states such that $\psi_2(x, t) = \psi_1(x, t + \tau_M)$ for fixed delay τ_M have Hilbert-Schmidt measure in spatial region A given by (Lorenzo Campos Venuti)

$$D(t) = \frac{\sqrt{\left(\int_{A} |\psi_{1}(x,t)|^{2} dx\right)^{2} + \left(\int_{A} |\psi_{2}(x,t)|^{2} dx\right)^{2} - 2\left|\int_{A} \psi_{1}^{*}(x,t)\psi_{2}(x,t)dx\right|^{2}}{\sqrt{2}}$$

- The system is considered Markovian if initial states $\psi_1(x, t)$ and $\psi_2(x, t)$ are both in spatial region A and D(t) subsequently decreases monotonically with time
- Example: non-interacting rectangular photon pulse propagating in free-space

Hilbert-Schmidt measure D(t) of photon interacting with Fabry-Perot dielectric resonator

- A (blue curve) left of dielectric resonator with some energy density flow into region
- B (black curve) which is in dielectric resonator with energy density flow into region
- *C* (red curve) to right of dielectric resonator
- *Note*: Extent of region in domain and definition of system, subsystem, bath, etc., is arbitrary

Hilbert-Schmidt measure D(t) of photon interacting with Fabry-Perot dielectric resonator

- Incident pulse-width $\tau_{\rm p}$ < $\tau_{\rm RT}$, $\tau_{\rm Q}$
- Single incident pulse produces multiple output pulses (ring-down) spaced at cavity round-trip time and of decreasing energy density as resonator decay e^{-t/τ_Q}

Hilbert-Schmidt measure D(t) of photon interacting with Fabry-Perot dielectric resonator

- A (blue curve) left of dielectric resonator with some energy density flow into region
- *B* (black curve) which is in dielectric resonator with energy density flow into region
- *C* (red curve) to right of dielectric resonator

Integrated non-Markovianity, $DI(t) = \sum_{i} (\Delta D(t_i)|_{\text{positive}})$

With single control pulse at $\tau = \tau_{\rm BT}$ Optical resonator: λ_n =1500nm, E_0=0.827eV, n_r=2.5, L_C=15 λ_0 , E_{spread}=0.207eV, τ_M =0.225ps Mamp0525T030M45.tif Non-Markovian 0.8 0.6 ⁾ ص 0.4 0.2 0.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 0 1 Time, t (ps) Optical resonator: λ_{D} =1500nm, E_{D} =0.827eV, n_{r} =2.5, L_{C} =15 λ_{D} , E_{spread} =0.207eV, τ_{M} =0.225ps Mamp0525T030M45DI.tif 0.9 Non-Markovian $\tau_0 = 5 \text{fs}$ 0.2 $\tau_{\rm RT}$ =150fs 0.1 $\tau_{\rm Q}$ =153fs $\tau_{\rm M}$ =225fs 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Time, t (ps)

43

Integrated non-Markovianity, $DI(t) = \sum_{i} (\Delta D(t_i)|_{\text{positive}})$

Integrated non-Markovianity, $DI(t) = \sum_{i} (\Delta D(t_i)|_{\text{positive}})$

No control pulse Cavity length L=120 x λ_0 Sub-space B' is left-side half-cavity of length L/2

Summary: Coherent control of single-photon energy density in a resonator

- Photonic resonator with lossless dielectric mirrors driven by phase-coherent source is open system coupled to continuum that evolves with unitary dynamics
 - Photon wave function, $\Psi(x,t)$, describes single-photon energy density, $U(x,t) = |\Psi(x,t)|^2$
 - Multiple resonator round-trip times, $\tau_{\rm RT}$, required to build-up steady-state behavior
 - Steady-state behavior evolves exponentially during characteristic resonator time, $\tau_{\rm Q}$
- *Transient behavior* controlled by incident waveform
 - Non-Markovian dynamics because mirror reflections and energy stored in resonator
 - Can eliminate all energy density in resonator in less than one round-trip time, $\tau_{\rm RT}$
 - Can control exact number of identical transmitted and reflected pulses at multiples of round-trip time, $\tau_{\rm RT}$
 - Can use control to pass long pulses, $\tau_{\rm P} > \tau_{\rm RT}$, through resonator
 - Control of transient behavior is also control of Markovianity (and hence information flow)
 - Non-Markovianity may be viewed as resource for quantum information processing
- Natural time scales are { τ_0 , $\tau_{\rm RT}$, $\tau_{\rm Q}$ } < $\tau_{\rm Coh}$
 - Resource for manipulation of single-photon quantum states
 - Use waveform as sensor probe of resonant structures (inverse problem)

Coherent control of single-photon transient dynamics in a Fabry-Perot resonator

A.F.J. Levi, L. Campos Venuti, T. Albash, and S. Haas, "Coherent control of non-Markovian photon resonator dynamics" Phys. Rev. A (2014)

OBJECTIVE:

- Demonstrate coherent quantum control of single-photon dynamics in an optical storage device
- Apply techniques developed to demonstrate control of non-Markovianity

APPROACH

Use photon pulse injected into Fabry-Perot resonator as model system coupled to continuum and simulate in space-time domain
 Exert precise control on photon dynamics using coherent control pulses and intuitive resonant control protocol
 Use L. Campos Venuti's computationally-efficient measure of non-Markovianity: N. Chancellor, C. Petri, L. Campos Venuti, A.F.J. Levi, and S. Haas, Phys. Rev. A (2014)

ACCOMPLISHMENTS: Successfully demonstrated control of singlephoton transient dynamics in Fabry-Perot resonator and measure of non-Markovianty

 A first step to exploitation of non-Markovian transient photon dynamics as a resource in coherent quantum systems
 Established methodology and techniques for further study

Coherent control of single-photon transient dynamics for logic

A. Abouzaid, F. Wang, S. Gupta, and A.F.J. Levi

OBJECTIVE:

 Demonstrate coherent quantum control of single-photon dynamics may be applied to boolean logic and perform exhaustive search in minimal linear device design sub-space for all feasible logic operations

APPROACH

> Basic (minimal) device building block is symmetric 50:50 singlephoton beam-splitter

➢ Formally enumerate all tree structures up to depth of k in which tree-structures have no feedback and no re-convergent fanout

> Combine two phase shifters/Modulators with one beam splitter to reduce the enumeration complexity

Use physical model to validate results

ACCOMPLISHMENTS: Exact suppression of reflection at beamsplitter using control pulse

 Optical pulse contains broad spectrum of frequency components that interact with symmetric 50:50 singlephoton beam-splitter
 Optimal control pulse to suppress reflection requires search for coherent single-photon phase and amplitude field parameters

ACCOMPLISHMENTS: Enumerator discovers all feasible boolean logic tree-structures

High-level simulator checks if feasible solution exists (to depth k in tree-structure) for a designated boolean function
 If no feasible solution is found by the high-level simulator, then that logic function cannot be implemented using only linear components connected in a tree-structure

➢ For any *n*-input configuration created using only linear components connected in a tree-structure, if a feasible solution exists for a given boolean function in the high level simulation, then the boolean function is implementable in the low-level simulator

ACCOMPLISHMENTS: Successfully enumerated all boolean logic using minimal components and constraints

Constrained to single-photon, beam-splitter, amplitude modulator, phase shifter, and tree-structure

 Components indicate events, i.e. an interaction between pulses and a particular component at some point in time and space
 Successfully demonstrated NAND and so complete for boolean logic

- > Also, NOT, OR, XOR, XNOR, and multiplexing
- > AND and NOR are not feasible

> Reshaping, retiming, and re-amplifying (3R) output may be achieved for classical light using a saturable absorber, however, the single-photon version of 3R is unknown

Acknowledgements

Walter Unglaub

Amine Abouzaid

Lorenzo Campos Venuti

Stephan Haas

Tameem Albash

Fangzhou Wang

Sandeep Gupta

A.F.J. Levi, L. Campos Venuti, T. Albash, and S. Haas, "Coherent control of non-Markovian photon resonator dynamics" Phys. Rev. **A** 90, 022119 (2014)