
PHYSICAL REVIEW A 83, 043827 (2011)

Quantum fluctuations and saturable absorption in mesoscale lasers
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We present a quantum-mechanical treatment of fluctuations and saturable absorption in mesoscale lasers.
The time evolution of the density matrix is obtained from numerical integration and field-field and intensity-
intensity correlations are calculated to obtain steady-state linewidth and photon statistics. Inclusion of a saturable
absorber in the otherwise homogeneous medium is shown to suppress lasing, increase fluctuations, and enhance
spontaneous emission near threshold.
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I. INTRODUCTION

Fluctuations due to quantization can dominate predicted
behavior of mesoscale lasers. Using only semiclassical master
equations and specific device parameters, it has previously
been shown that quantization of particle number, and the fact
that a lowest energy state of the system exists, can suppress las-
ing and enhance spontaneous emission around threshold [1,2].
For this semiclassical system, dynamic switching between
two characteristic system states can dominate fluctuations
and correlations between n discrete excited electronic emitter
states and s discrete photons and create a non-Poisson
probability distribution.

However, studying the fundamental contribution of field
quantization to noise and fluctuations in mesoscale lasers
requires going beyond particle number quantization and
semiclassical master equations. Here, we use a quantum-
mechanical description of a mesoscale laser containing s cavity
photons and Ne emitters and find solutions by direct integration
of the system’s density matrix. Quantum fluctuations in this
finite-sized dissipative system are found to be sensitive to
the number of emitters and the presence of inhomogeneous
saturable absorption.

This paper is organized as follows. In Sec. II, a model
is developed that includes Ne two-level (quantum dot or
atom) emitters incoherently pumped by an external reservoir
and a quantized photon field with s cavity photons that can
decay into an external reservoir through finite reflectivity
mirrors. Section III describes the calculated steady-state
properties as the number of identical emitters in the cavity is
increased. Section IV considers the case of an inhomogeneous
active system consisting of identical emitters and a saturable
absorber. Under these conditions, the quantum model can
predict lasing suppression, enhanced spontaneous emission
and the associated emitter excitation number depinning,
and bimodal probability distributions. These results allow
interpretation of previously reported behavior found by solving
the semiclassical master equations [1,2]. Section V describes
the predictions of the quantum-model correlation functions for
the production of squeezed light.

II. THE MODEL

Figure 1(a) is a schematic diagram of a prototype mesoscale
laser consisting of multiple two-level emitters such as quantum
dots or atoms coupled to a single-cavity mode in a high-Q

optical cavity formed by two partially transmitting mirrors. In
our model of this system, both light and emitters are treated
quantum mechanically. The number of emitters is Ne and,
for simplicity, they are assumed to be in resonance with the
single-cavity mode and so detuning is ignored.

As illustrated in Fig. 1(b), emitter electronic states are
continuously incoherently pumped at rate P by an external
reservoir. The stimulated and spontaneous emission coefficient
coupling the ground |1〉 and excited |2〉 electronic states of
each emitter is g. The separation in emitter eigenenergy is
E2 − E1 = h̄ω, where ω is the angular frequency of the high-Q
optical cavity resonance. The emitters are damped at rate γ by
a reservoir of oscillators representing incoherent decay via
spontaneous emission into nonlasing leaky modes. Decay of
the laser photon field in the single-cavity mode is by coupling
to another external reservoir through partially transmitting
mirrors with total loss rate κ .

The Hamiltonian describing two-level emitters coupled to a
single-cavity mode and interacting with external reservoirs is

H = HS + HRS + HR, (1)

where HS is the Hamiltonian of the system of emitters
and photons, HR is the Hamiltonian for the reservoirs,
and HRS couples the system to the reservoirs. HS is the
Jaynes-Cummings Hamiltonian [3] coupling a single-cavity
mode with the emitters. For a homogeneous system, in which
emitter properties are identical,

HS = ωa†a +
Ne∑
k=1

ω|2k〉〈2k| + g(σka
† + aσk

†), (2)

where h̄ = 1, and the operators σk
† = |2k〉〈1k| and

σk = |1k〉〈2k| couple the ground |1k〉 and excited |2k〉
electronic states of the emitter k with energies E1 = 0 and
E2 = ω, respectively. The operator a† creates a photon of
energy ω. The coupling terms are evaluated within the dipole
and rotating-wave approximation [3].

The Hamiltonian coupling the system to the reservoirs
is

HRS =
∑
R′′

µR′′ [ab
†
R′′ + bR′′a†] +

∑
R

λR[σkbR
† + bRσk

†]

+
∑
R′

λ′
R′[σkbR′ † + bR′σk

†]. (3)
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FIG. 1. (Color online) (a) Schematic diagram of multiple emitters
coupled to a single optical cavity mode with total mirror loss rate, κ .
(b) Processes in a single emitter showing incoherent pump transition
rate, P , stimulated and spontaneous coefficient, g, and loss rate, γ .
The separation in emitter eigenenergy is E2 − E1 = h̄ω, where ω is
the angular frequency of the high-Q optical cavity resonance.

The first term causes direct dissipation of cavity mode photons
due to incomplete reflectance of the mirrors and thereby
coupling it to the continuum of photonic modes outside
the micro-cavity. The second term is dissipation by direct
coupling of the emitter to harmonic oscillator photonic modes
different from the cavity mode. This describes dissipation of
the emitter by spontaneous emission to an external reservoir of
photons created by b

†
R . The last term is due to the incoherent

pump that is modeled as an inverse spontaneous decay
process. The pump is a process that couples the emitter with a
reservoir of inverted harmonic oscillators [4,5]. The pumping
and emission mechanisms in HRS introduce decoherence
affecting the quantum properties of the system.

The term HR describes the external reservoirs of harmonic
oscillators with bosonic commutation rules. The coupling
constants µR and λR depend on the particular mode of
the reservoir. Detailed derivation of these interactions with
reservoirs may be found in Refs. [3,4,6,7].

To describe the different pumping and loss mechanisms
for a single emitter it is convenient to work in the basis
(|1s〉; |2s〉), where s is the number of cavity photons and
(1, 2) are the states of the emitter. These are product states
between the emitter states and the Fock states of the cavity
mode. Although the theory may include the effects of finite-
temperature reservoirs, we consider the special case of zero
temperature (T = 0 K) to emphasize the quantum origin of
the fluctuations. The reduced density matrix ρ for the coupled
emitter-photon system is obtained from the total density matrix
ρT by tracing out the reservoir degrees of freedom. In the
interaction picture for multiple emitters, ρ satisfies the master
equation

dρ

dt
= i

h̄
[ρ,HS] + κ

2
(2aρa† − a†aρ − ρa†a)

+
∑

k

γk

2
(2σkρσk

† − σk
†σkρ − ρσk

†σ )

+
∑

k

Pk

2
(2σk

†ρσk − σkσk
†ρ − ρσkσk

†) (4)

or
dρ

dt
= L̂ρ, (5)

where L̂ is the time propagator for the density matrix.
The master equation is obtained under the Born-Markov

approximation [3] for the interaction between the system and
the reservoirs. In the chosen basis, the matrix elements of the
reduced density operator ρ are

ρkn,jm = 〈kn|ρ|jm〉. (6)

The diagonal matrix elements describe populations of the
emitter-photon levels and the off-diagonal terms quantify the
coherence between these levels. Equation (4) may be used to
obtain the time evolution of the system. For a single emitter
at time t = 0 the evolution of the density matrix is

dρ

dt
=

[
∂tρ1s,1s ∂tρ1s,2s−1

∂tρ
∗
1s,2s−1 ∂tρ2s,2s

]
, (7)

where

∂tρ1s,1s = ig
√

s(ρ1s,2s−1 − ρ1s−1,2s) + γρ2s,2s

− κ[sρ1s,1s − (s + 1)ρ1s+1,1s+1] − Pρ1s,1s , (8)

∂tρ2s,2s = ig
√

s + 1(ρ1s,2s+1 − ρ1s+1,2s) − γρ2s,2s

− κ[sρ2s,2s − (s + 1)ρ2s+1,2s+1] + Pρ1s,1s , (9)

∂tρ1s,2s−1 = ig
√

s(ρ1s,1s − ρ2s−1,2s−1)

−{[γ + κ(2s − 1) + P ]/2}ρ2s,1s−1

+ κ
√

s(s + 1)ρ1s+1,2s . (10)

The interaction parametrized by κ , γ , and P couples matrix
elements with different photon occupation number s. This
leads to an infinite set of differential equations which are
truncated for numerical integration at a high value of s.

The first-order equations derived from the density matrix
couples terms in a systematic way. Since there is no detuning,
energy units of photons and emitters are the same. The terms
ρ1s,1s , ρ2s−1,2s−1, ρ1s,2s−1, and ρ2s−1,1s all have the same units
of energy, i.e., s. More importantly, the corresponding bra
and ket components of an element have the same energy. For
example, ρ1s−1,2s has the same energy of s units for its 〈1s − 1|
and |2s〉. This principle holds for multiple emitters. An
example of a density-matrix element of a Ne = 4 two-level
emitter system is 〈2121s|ρ|2221s − 1〉, where the first four
numbers represent the states of the four emitters. This element
is similar to the simple single-emitter element, as it has equal
energy in its bra and ket components and also couples with
similar equal energy elements. The number of terms coupled
grows as 4Ne .

The master equations may be used to compute the dynamics
of expectation values of any system operators. The evaluation
of the diagonal elements allows calculation of steady-state
properties and single time averages of operators. The important
photon field-field and intensity-intensity correlations are

g1(t,τ ) = 〈a†(t)a(t + τ )〉, (11)

g2(t,τ ) = 〈a†(t)a†(t + τ )a(t + τ )a(t)〉. (12)

In steady state, these correlations do not depend on time t and
can be evaluated using

〈a†(t)a(t + τ )〉 = Tr[aeL̂τ (ρsa
†)], (13)

〈a†(t)a†(t + τ )a(t + τ )a(t)〉 = Tr[a†aeL̂τ (aρsa
†)], (14)
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which is valid for Markovian systems [4]. Here, ρs is the
steady-state solution of the master equation (5) and L̂ is the
time evolution operator of the density matrix.

The coupled density-matrix equations used to obtain the
first-order correlation function g1(t,τ ) are

∂tρ1s+1,1s = ig(
√

sρ1s+1,2s−1 − √
s + 1ρ2s,1s) + γρ2s+1,2s

−Pρ1s+1,1s + κ

2
[2

√
(s + 1)(s + 2)ρ1s+2,1s+1

− (2s + 1)ρ1s+1,1s], (15)

∂tρ2s+1,2s = ig(
√

s + 1ρ2s+1,1s+1 − √
s + 2ρ1s+2,2s)

− γρ2s+1,2s + Pρ1s+1,1s + κ

2
[2

√
(s + 1)(s + 2)

× ρ2s+2,2s+1 − (2s + 1)ρ2s+1,2s], (16)

∂tρ2s,1s = ig(
√

sρ2s,2s−1 − √
s + 1ρ1s+1,1s)

− [(γ + 2sκ + P )/2]ρ2s,1s + κ(s + 1)ρ2s+1,1s+1,

(17)

∂tρ1s+1,2s−1 = ig(
√

sρ1s+1,1s − √
s + 1ρ2s,2s−1)

− [(γ + 2sκ + P )/2]ρ1s+1,2s−1

+ κ
√

s(s + 2)ρ1s+2,2s . (18)

The terms ρ1s+1,1s , ρ2s,2s−1, ρ2s,1s , and ρ1s+1,2s−1 all have
the same units of energy, s + 1 and s, in their bra and ket
components, respectively. Similar terms are coupled to each
other and the same principle is obeyed when more emitters
are added. The steady-state solution to Eqs. (8)–(10) contains
terms ρ1s,1s , ρ2s−1,2s−1, ρ1s,2s−1, and ρ2s−1,1s . The a† operator
acting on the density matrix produces terms ρ1s+1,1s , ρ2s,2s−1,
ρ2s,1s , and ρ1s+1,2s−1. Therefore, the steady-state solution to
the first set of equations (8)–(10) gives the initial value for the
second set of equations (15)–(18). More off-diagonal terms
are produced by this operation. The a operator acting on the
product of ρa† brings back the diagonal, which is then summed
to obtain g1(t,τ ). Likewise, the operation aρa† produces
equations coupling terms similar to Eqs. (8)–(10) because of
the two operations on the density matrix.

The photon field-field correlation gives information on
phase fluctuations and the frequency spectrum of emitted light,
S(ν), may be obtained from the Fourier transform

S(ν) = 1

π
Re

∫ ∞

0
dτ eiντ g1(t,τ ). (19)

The intensity-intensity correlation gives information on photon
number statistics. Phenomena such as squeezed states or
antibunching may be investigated using this correlation. For
zero delay (τ = 0) the normalized second-order correlation
obtained from Eq. (14) is

G2(τ = 0) = 〈a†a†aa〉
〈a†a〉2 =

∑
s s(s − 1)(ρ2s,2s + ρ1s,1s)[∑

s s(ρ2s,2s + ρ1s,1s)
]2 .

(20)

The Fano factor, or normalized variance, may also be used
as a measure of photon number fluctuations and is given by

F = 〈s2〉 − 〈s〉2

〈s〉 , (21)

where s is the cavity photon number.

III. SCALING OF LASERS

A. Single emitter

We begin by analyzing the case of a single two-level emitter
in a lasing cavity. Figure 2 illustrates the steady-state behavior
of a single emitter for different cavity losses as a function
of the incoherent pump rate. Parameters used scale within
a range corresponding to very recent experiments on single
quantum dot [8] and single ion [9] lasers. The cavity with
the highest optical Q stores the maximum number of photons
and two distinct peaks in the Fano factor are predicted [10].
As shown in Fig. 2(c), the strong photon number fluctuations
experienced by the system near lasing threshold pump rates
gives rise to a Fano-factor peak at low pump rates. Another
peak appears due to self-quenching [10,11] at larger pump
rates. This occurs when correlations required for lasing are
destroyed by a strong incoherent pump and the effective gain
is insufficient to overcome the cavity losses [10]. Thus, as
the system undergoes self-quenching, the cavity fails to store
lasing photons due to the presence of a strong incoherent
pump and the photon field experiences strong fluctuations.
Increasing cavity loss reduces the number of cavity photons
and the two peaks in the Fano factor collapse to a single peak.
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FIG. 2. (Color online) Variation of steady-state properties of a
single two-level emitter coupled to a cavity field with incoherent
pump rate, P , for the indicated values of cavity loss rate, κ (meV).
(a) Mean photon number in lasing mode. (b) Inversion of emitter
showing significant signature of inversion pinning for low optical
loss, κ = 0.1 meV. (c) Fano factor for photon number, s. The laser
threshold corresponds to a broad peak near P = 1 meV for κ <

0.8 meV. A peak due to self-quenching occurs for P > 10 meV.
(d) Spectral linewidth. The pump axis is on a log10 scale. The dark
solid line represents κ = 0.1 meV, the dotted line, κ = 0.2 meV, the
dash-dotted line, κ = 0.4 meV, and the light solid line, κ = 0.8 meV.
The parameters are g = 1 meV, γ = 0.1 meV, and ω = 1000 meV.
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A value of Fano factor or normalized second-order correlation
G2(τ = 0) less than unity signifies nonclassical light, which
may exist when there is high cavity loss and low pump
rate [12].

The inversion of the single emitter shown in Fig. 2(b) has
a region of low slope in the presence of large photon number
before it saturates completely. This is a signature of the carrier-
pinning process that occurs in large conventional laser diodes
when driven above threshold. However, in a single-emitter
laser, the onset of self-quenching due to incoherent pumping
destroys the coherence and reduces the effective gain. The
system tries to compensate by increasing its inversion, fails,
and dissipates energy by spontaneously emitting into modes
other than the lasing mode.

As is characteristic of lasing behavior, the spectral linewidth
of the photon field decreases with increasing number of cavity
photons. The cavity with the lowest loss can attain the smallest
linewidth. Far below threshold the linewidth is large because
of the presence of a noninverted absorbing medium [10]. As
shown in Fig. 2(d), the linewidth decreases with increasing
number of cavity photons. As the system starts self-quenching,
the linewidth increases, asymptotically approaching the empty
cavity linewidth.

B. Multiple emitters

Results of our calculations shown in Fig. 3 confirm a
previous suggestion [11] that adding emitters that act as
independent sources coupled by the photon field is equivalent
to making the cavity-emitter coupling, g, stronger. Enhanced
coupling provides more emission into the lasing mode and
self-quenching occurs at larger values of the pump rate. As
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FIG. 3. (Color online) Variation of steady-state properties of
multiple two-level emitters coupled to a cavity field as a function
of normalized incoherent pump, P , for the indicated number of
emitters. (a) Mean photon number in lasing mode. (b) Net inversion
of emitters. (c) Fano factor. The laser threshold corresponds to a
broad peak with P < 1 meV. The peak due to self-quenching occurs
when P > 10 meV. (d) Spectral linewidth. The pump axis is on a
log10 scale. The dark solid line represents Ne = 1, the dotted line,
Ne = 2, the dash-dotted line, Ne = 3, and the light solid line, Ne =
4. The parameters are as in Fig. 2: g = 1 meV, γ = 0.1 meV, ω =
1000 meV, and κ = 0.25 meV.

more emitters are added the position of the two peaks in
the Fano factor becomes more widely separated in pump
rate. In Fig. 3 the steady-state behavior is plotted against the
normalized pump rate (with the actual pump energy flowing
into the system being obtained by multiplying the normalized
value, P , by the number of emitters, Ne).

Due to a stronger effective coupling the peak that occurs
at a smaller pump rate shifts to a lower pump rate with
increasing number of emitters. Also, with increasing number of
emitters, self-quenching occurs at higher values of normalized
pump rate because photons generated by a given emitter
induce transitions in other emitters. Similarly, for inversion,
the device with the largest number of emitters has the strongest
pinning.

C. Semiclassical rate equations derived from
quantum master equations

We now compare the full quantum calculations with the
steady-state values predicted by semiclassical rate equations.
Here, the semiclassical rate equations are derived from the
quantum master equations under an approximation in which
correlations between emitter and photon operators are factor-
ized. This factorization approximation is valid in the presence
of large photon numbers.

For any system operator O, the equation governing its
expectation value can be derived from the quantum master
equation, [11]

d〈O〉
dt

= − i

h̄
〈[O,H ]〉 + Tr(OLρ). (22)

For system operators s = a†a, a, σk
†, and σzk , the equations

are as follows:

d〈s〉
dt

= − i

h̄

∑
k

gk[〈σka
†〉 − 〈aσk

†〉] − κ〈s〉, (23)

d
〈 ∑

i σzk

〉
dt

= k

h̄

∑
k

2gk[〈σka
†〉 − 〈aσk

†〉]

− (γ + P )
∑

k

〈σzk〉 + Na(P − γ ), (24)

d〈a〉
dt

= −k

h̄

∑
i

gk〈σk〉 − κ

2
〈a〉, (25)

d〈σk
†〉

dt
= −k

h̄
gk〈σzka

†〉 − γ + P

2
〈σk

†〉, (26)

where σzk is the inversion of the kth emitter. Solving these
equations and their complex conjugates in steady state yield
mean cavity photon number 〈s〉 and net inversion above
threshold 〈∑k σzk〉,

〈s〉 = 1

2κ

[
Na(P − γ ) − κ

(
h̄(γ + P )

2g

)2 ]
, (27)〈∑

k

σzk

〉
= h̄2κ(γ + P )

4g2
. (28)

As shown in the previous section, more emitters lead to
more photons in the cavity and hence a better agreement is
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FIG. 4. (Color online) Comparison of steady-state properties
derived from semiclassical rate equations and the full quantum theory.
(a) Mean photon number in lasing mode. (b) Net inversion of emitters.
(c) Fano factor. The threshold for Ne � 2 corresponds to a peak
near P = 3 meV and the peak due to self-quenching occurs for
P > 20 meV. (d) Spectral linewidth. The behavior for a different
number of emitters is compared. The pump axis is on a log10 scale.
The dark solid line represents Ne = 1, the dotted line, Ne = 2,
the dash-dotted line, Ne = 3, and the light solid line, Ne = 4.
The thicker lines denote quantum calculations and the corresponding
thinner lines denote semiclassical calculations. The parameters are
g = 1 meV, γ = 2 meV, ω = 1000 meV, and κ = 0.25 meV.

observed with the semiclassical rate equation predictions. This
is similar to increasing the cavity-emitter coupling, g, which
also leads to more photons in the cavity.

The parameters in Fig. 4 are modified to produce a larger
laser threshold compared to that shown in Fig. 3. This is done
by enhancing the spontaneous emission rate γ into nonlasing
modes. The cavity with a single emitter supports a single peak
in the Fano factor. Increasing γ reduces the effective gain [10],
which leads to a smaller number of photons in the lasing cavity.

There is good agreement between the predictions of the
full quantum theory and the semi-classical rate equations in
regions of large photon numbers as shown by Figs. 4(a) and
4(b). Disagreement is found near lasing threshold and self-
quenching because the factorization approximation fails when
average photon numbers are small.

D. Semiclassical master equations

It is interesting to compare the predictions of the full
quantum calculations with those of the semiclassical master
equations developed in Refs. [1,2]. Figure 5 shows transitions
out of (n,s) in the n-s state space, where n denotes the discrete
number of excited electronic states in the cavity and s denotes
the number of photons. The trajectories of a biased random
walk in the n-s state space are used to sample the solutions to
the semiclassical master equations.

The random-walk calculations are modified in the sense
that the number of emitters or excited states in the cavity
is limited. Therefore, current can only pump the system
if emitter excitation is possible. The semiclassical master
equations account for energy and particle number conservation

FIG. 5. Transition rates out of state (n,s). g is the dipole coupling
constant, −gns is the stimulated emission rate in the system at photon
energy h̄ω, −g(Ne − n)s is the stimulated absorption rate where Ne

is the maximum number of emitters, γ is the spontaneous emission
rate into modes other than the cavity mode, and κ is the total optical
loss rate from the cavity. I is the excited-state injection (pump) rate.

but they do not include phase fluctuations and hence cannot
reproduce the effects of self-quenching, which occur due
to suppression of coherence. However, the method predicts
the enhanced photon fluctuations around threshold quantified
by the Fano factor, after which, with increasing pump rate,
the excitation gets pinned and the cavity photon number
increases. Figure 6 compares semiclassical master equation
behavior with the full quantum model and shows good
agreement near the threshold region before the onset of
quenching. The net excitation is partially pinned at similar
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FIG. 6. (Color online) Comparison of steady-state properties
derived from semiclassical master equations and the full quantum
theory for different numbers of emitters. (a) Mean photon number in
lasing mode. (b) Net inversion of emitters. (c) Fano factor. The laser
threshold for Ne � 2 corresponds to a broad peak near P = 3 meV
and self-quenching, which is a pure quantum effect, occurs for
P > 20 meV. (d) Spectral linewidth. The pump axis is on a log10

scale. The dark solid line represents Ne = 1, the dotted line, Ne =
2, the dash-dotted line, Ne = 3, and the light solid line, Ne = 4.
The thicker lines denote quantum calculations and the corresponding
thinner lines denote semiclassical master equation calculations. The
parameters are as in Fig. 4: g = 1 meV, γ = 2 meV, ω = 1000 meV,
and κ = 0.25 meV.
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FIG. 7. System of multiple emitters coupled to a single optical
cavity mode in the presence of a saturable absorber. The illustration
is for Ne = 3 and Na = 1. It is assumed that g < g′ and γ < γ ′.

values of pump rate predicted by the semiclassical calculations
[Fig. 6(b)]. The location of the lasing threshold pump rate,
as determined by the first peak in the Fano factor, is also in

close agreement with the semiclassical calculations [Fig. 6(c)].
These results validate the assumption that particle number
quantization captures much of the full quantum model of
multiemitter mesolasers [1,2] for pump rates below the onset
of self-quenching. There is somewhat less agreement for the
case of a single emitter, indicating that it is more sensitive
to complete field quantization compared to the multiemitter
case.

The semiclassical master equation predictions of lasing
suppression around threshold and the associated excited
electronic state depinning around threshold found in Refs. [1,2]
are however absent in the full quantum model for Ne identical
emitters. This is because, in a homogeneous quantum system,
spontaneous emission into the lasing mode has the same
coefficient as the net stimulated gain term in the presence
of one photon [13–16]. The semiclassical master equation is
not constrained in this way and the stimulated gain and sponta-
neous emission into the lasing mode are taken as independent
phenomenological parameters [5,17,18]. The effects of lasing
suppression around threshold and bimodal probability distri-
butions may be captured in the full quantum model by includ-
ing a saturable absorber in the system. This inhomogeneity
provides an explanation of the origin of the phenomenological
parameters used in the semiclassical master equation.
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FIG. 8. (Color online) Steady-state properties of an emitter-photon system in the presence of a saturable absorber. Semiclassical master
equation calculations [(MC), thin lines] and the full quantum theory calculations [(QC), thick lines] are shown. (a) Mean photon number
in lasing mode. (b) Net excitation of emitters. (c) Fano factor. (d) Spectral linewidth. (e) Excitation of absorbing element. (f) Second-order
coherence at zero delay, G2(τ = 0). (g) Probability distributions across threshold from full quantum theory. (h) Spectrum at different normalized
pump rates (meV). The emitter elements are Ne = 3; the absorbing element is Na = 1. The parameters are g = 1 meV, γ = 0.1 meV, ω =
1000 meV, κ = 0.1 meV, g′ = 4g, and γ ′ = 100γ .
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IV. SATURABLE ABSORBER

Inhomogeneity is incorporated in the quantum model of
the laser by including a saturable absorber. As illustrated in
Fig. 7, this is achieved by introducing Na saturable absorber
material elements, each coupled to the photon field by a
coupling constant g′ and decay rate γ ′. This material is not
incoherently pumped and it absorbs photons created in the
cavity by emitters. Once saturated, the system may lase. The
Hamiltonian is

HS = ωa†a +
Ne∑
k=1

ω|2k〉〈2k| + g(σka
† + aσk

†)

+
Na∑

k′=1

ω|2k′ 〉〈2k′ | + g′(σk′a† + aσk′ †). (29)

Including the interaction with reservoirs, the master equa-
tion is

dρ

dt
= i

h̄
[ρ,HS] + κ

2
(2aρa† − a†aρ − ρa†a)

+
Ne∑
k=1

γk

2
(2σkρσk

† − σk
†σkρ − ρσk

†σk)

+
Ne∑
k=1

Pk

2
(2σk

†ρσk − σkσk
†ρ − ρσkσk

†)

+
Na∑

k′=1

γ ′
k′

2
(2σk′ρσk′ † − σk′ †σk′ρ − ρσk′ †σk′). (30)

As shown in Figs. 8 and 9, with appropriate choice of
parameters, results of the quantum model are similar to the
predictions of semiclassical master equations. A linear scale is
chosen in Fig. 8 for easy comparison with our previous results
in Refs. [1,2]. The horizontal scale is limited to values of pump
rate less than that at the onset of self-quenching. The behavior
of a mesolaser with a saturable absorber for pump rates that
include self-quenching is shown in Fig. 9.

Figures 8 and 9 show bimodal photon distributions
[Fig. 8(g)] and excited-state depinning around threshold
[Figs. 8(b) and 9(b)]. Emitter inversion (or excitation) depins
around the lasing threshold to produce the extra photons
required to saturate the absorber before the system can start
lasing continuously, at which point the excitation gets pinned.
The photon distribution near the depinned region is bimodal
with a strong peak at zero photon number, indicating strong
switching (or blinking) between the lasing and zero-photon
states of the system. De-pinning also increases spontaneous
emission into non-lasing modes.

The Fano factor shows a peak around the onset of lasing
[Figs. 8(c) and 9(c)] and the linewidth decreases with
increasing photon number [Figs. 8(d) and 9(d)], both of which
are signatures of threshold behavior. With further increase of
pump rate, the system enters its self-quenching behavior and
the number of photons in the cavity decreases, the absorber
loses its inversion, and the lasing emitters are pinned at the
saturation value. The probability distributions in Fig. 8(g)
from the quantum model show that the peak at s = 0 is reduced
as the pump rate is increased. It reaches its smallest value
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FIG. 9. (Color online) Steady-state properties of a two-emitter
system in the presence of a saturable absorber. (a) Mean pho-
ton number in the lasing mode. (b) Net excitation of emitters.
(c) Fano factor. The laser threshold corresponds to a broad peak
near P = 1 meV and self-quenching corresponds to the peak near
P = 20 meV. (d) Spectral linewidth. (e) Excitation of absorbing
element. (f) Second-order coherence at zero delay, G2(τ = 0). The
number of emitter elements is Ne = 2 and the number of absorbing
elements is Na = 1. The pump axis is on a log10 scale. The parameters
are g = 1 meV, γ = 0.1 meV, ω = 1000 meV, κ = 0.25 meV, g′ =
4g, and γ ′ = 4γ .

at a pump rate near the linear region of lasing, after which it
again starts increasing because of the onset of quenching. The
semiclassical behavior, however, loses this peak (at s = 0) and
a single-peaked distribution remains and the system does not
quench. The normalized second-order correlation G2(τ = 0)
increases in this region of bimodal distribution before it reaches
a value of 1, showing a Poisson distribution as the system starts
lasing.

With increase in photon number, the spectral linewidth
shown in Fig. 8(d) initially increases before it starts
decreasing. This is due to the presence of the absorber.
Experiments with semiconductor quantum wire and quantum
dot lasers whose active region is likely inhomogeneous also
show an increase in spectral linewidth before a decrease with
increasing pump around threshold [8,19]. At values of pump
rate sufficiently large that the system quenches, calculations
show that the linewidth is greater than that of the empty
cavity. This occurs because absorber occupation is no longer
inverted.

Figure 10 shows linewidth behavior with increasing pump
rate below and near threshold for different absorber coupling
strength, g′. The case with the smallest coupling, g′ = 1,
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FIG. 10. (Color online) Comparison of steady-state properties of
an emitter-photon system in the presence of a saturable absorber for
indicated absorber coupling g′ in meV. The normalized pump power
is shown from low values up to values around threshold. (a) Mean
photon number in the lasing mode. (b) Net excitation of emitters.
(c) Fano factor. (d) Spectral linewidth. (e) Excitation of absorbing
element. (f) Second-order coherence at zero delay, G2(τ = 0). The
number of emitter elements is Ne = 3 and the number of absorbing
elements is Na = 1. The pump axis is on a log10 scale. The parameters
are g = 1 meV, γ = 0.1 meV, ω = 1000 meV, κ = 0.10 meV, and
γ ′ = 100γ . The curves correspond to different values of absorber
coupling g′ (meV).

behaves similar to a conventional laser. Figure 10(d) shows
that increasing g′ produces a greater broadening of linewidth
or enhanced phase fluctuations in the region below threshold.
The photon probability distributions are not bimodal in this
region. However, at greater pump rates large values of g′
create bimodal distributions and excitation depinning. This
gives rise to a region of enhanced phase fluctuations and
hence increased linewidth, before, with increased pump rate,
experiencing enhanced amplitude fluctuations quantified by
the Fano factor around threshold. Decreasing the value of
γ ′ reduces the range of pump values over which linewidth
increases.

Previous studies of lasers incorporating a saturable ab-
sorber, such as [20–23], make use of the large-particle-number
approximation and (or) adiabatic elimination. This previous
work contains some features common to our results, in-
cluding lasing suppression and bimodal photon distribution
near threshold. However, the previous work has no results
for mesoscale laser excitation depinning or mesoscale laser
spectral linewidth, and it is unable to predict quenching due to
quantum decoherence.
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FIG. 11. (Color online) Time evolution of normalized second-
order correlation G2(τ ) for the indicated number of emitters in
the cavity. The parameters are g = 1 meV, γ = 0.1 meV, ω =
1000 meV, and κ = 2.5 meV, and the normalized pump is P =
0.5 meV.

V. NONCLASSICAL LIGHT

As shown in Ref. [12], low pumping and high cavity
losses lead to nonclassical states of light. The second-order
correlation, G2(τ = 0), at zero delay is used to identify non-
classical states. Figure 11 plots the variation of the normalized
second-order correlation, G2(τ ), at τ > 0 for one, two, and
three emitters for high values of photon damping and low pump
rates using Eq. (14). The one-emitter case shows nonclassical
behavior as predicted because G2(τ = 0) is less than 1. The
time variation also violates Schwartz’s inequality, G2(τ ) >

G2(τ = 0) [3], and is a signature of antibunched behavior.
Increasing the number of emitters removes this nonclassical
behavior. For multiple emitters the correlation values at zero
delay and the time variation are characteristic of bunched
photon emission from a classical source [10,11,24,25].

VI. CONCLUSION

The fundamental contribution of field quantization to noise
and fluctuations in mesoscale lasers that include inhomogene-
ity in the form of a saturable absorber has been investigated
theoretically. Quantum fluctuations in this finite-sized dissipa-
tive system can influence spectral emission linewidth, suppress
lasing, increase particle number fluctuations, and enhance
spontaneous emission near threshold. We have presented
numerical simulations of static and dynamic properties of
mesoscale lasers using a quantum model with no special
approximations (such as weak coupling between the field
and reservoir or a single-atom emitter approximation). We
have applied this model to an inhomogenous mesoscale
laser containing Ne emitters and a saturable absorber and
demonstrated existence of excitation depinning which has
previously either been ignored or adiabatically eliminated.
Our results provide an interpretation of empirically determined
values of β used in semiclassical mesoscale laser models [18]
as being due to the presence of an inhomogeneous medium and
we have successfully established the connection between the
semiclassical [1,2] and full quantum description of mesoscale
lasers. Our work also provides insight into the role of phase and
particle number fluctuations in determining the experimentally
observed spectral and particle correlation behavior of small
lasers [8,9,19].

043827-8



QUANTUM FLUCTUATIONS AND SATURABLE ABSORPTION . . . PHYSICAL REVIEW A 83, 043827 (2011)

Future work might explore the impact of quantum fluctua-
tions in determining the temperature sensitivity of very small
lasers and compare this with its known role in determining
temperature dependence of conventional laser diodes [26–28].
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