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Quantum fluctuations in very small laser diodes
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Quantum fluctuations play a critical role in determining the steady-state and transient response of a laser when
there is a small number of particles in the system. These fluctuations, and the fact that a lowest energy state of
the system exists, can suppress lasing and enhance spontaneous emission around threshold. Dynamic switching
between two characteristic system states can dominate the fluctuations. Correlations between n discrete excited
electronic states and s discrete photons create a non-Poisson probability distribution and damp the average
dynamic response of laser emission.
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I. INTRODUCTION

Laser diodes are employed in diverse and important applica-
tions. They are used in fiber-optic communication systems for
the Internet, they are essential for all optical storage, and they
enable high-quality, low-cost printing. Understanding how
laser diodes work, in particular how they might be reduced
in size, is of interest because small devices might cost less
and thereby find new uses. Unlike standard laser diodes, we
will show that small lasers can behave differently and are, in
fact, an example of a finite-sized quantum system in which
correlated particle number fluctuations dominate behavior.

The physics determining operation of a conventional laser
is quite well understood in the thermodynamic limit. In this
case there is a large number of excited states in the system, the
fraction of spontaneous emission, β, feeding into the lasing
optical mode is small (β ∼ 10−4), and there is a well-defined
threshold between incoherent nonlasing photon emission and
coherent lasing photon emission. The approximate behavior
of these systems may be described using continuum mean-
field rate equations. Beyond these relatively crude models,
quantum statistical theories of laser operation exist. When
evaluated in the large particle number limit, they successfully
reproduce the continuum mean-field results and may be used
to model particle number fluctuations and statistics in the
thermodynamic limit. Well-established models of this type
include Fokker-Plank equations developed by Haken [1] and
a density matrix approach by Scully and Lamb [2–4]. The
ensemble averages used in these models cannot be applied
to small systems involving a few particles. However, they do
highlight the importance of quantum fluctuations in relatively
large lasers. For example, experiments show that fluctuations
in photon number play an essential role in determining the
temperature dependence of conventional laser diodes [5–7]. In
these devices, and in agreement with the Landau-Ginzburg
theory of phase transitions, fluctuations enhance photon
emission below threshold and suppress spontaneous emission.
This behavior occurs because the devices are large and operate
in the thermodynamic limit. The situation is expected to
be qualitatively different when the laser is small and the dis-
crete quantum nature of the particles in the system influences

device behavior. It is this change in the physics determining
laser operation that we set out to address.

Recently, a considerable amount of research has focused
on developing small lasers with ultralow threshold values
[8–11]. One idea employs the cavity-quantum electrodynamics
(QED) effect [12] in which optical emission from an atom may
be modified by changing its electromagnetic environment.
The threshold of single-mode lasers can be reduced if the
fraction of spontaneous emission, β, feeding into the lasing
mode is increased. This is achieved by inhibiting emission into
nonlasing optical modes using high-quality-factor (high-Q)
microcavities. The limiting case is β = 1 in which all the
spontaneous emission feeds into the lasing mode.

Typically, continuum mean-field rate equations have been
employed to describe laser diode behavior. The equations used
are of the form

d〈n〉
dt

= −B〈n〉2 − a�c

V nr
〈(n − n0)〉〈s〉 + I

e
, (1)

d〈s〉
dt

= βB〈n〉2 + a�c

V nr
〈(n − n0)〉〈s〉 − κ〈s〉, (2)

where 〈n〉 is the mean carrier number in the active volume V

and 〈s〉 is the mean photon number in the optical cavity. In the
equations, a�c

V nr
〈(n − n0)〉〈s〉 is the stimulated emission term

for a bulk active region, c is the speed of light in vacuum,
n0 is the carrier number at optical transparency, a is the
optical gain slope coefficient, � is the optical confinement
factor, and nr is the refractive index of the medium. The
term −B〈n〉2 describes spontaneous emission, where B =
B ′/V and B ′ is the spontaneous emission coefficient. Other
contributions to the carrier recombination are often included in
(1). For example, −Anr〈n〉 can be used to describe nonradiative
recombination and −(C/V 2)〈n〉3 is a nonlinear contribution to
recombination. The term κ〈s〉 denotes cavity loss of photons,
where κ = c

nr
[αi + 1

2Lc
ln( 1

r1r2
)], cavity length is Lc, mirror

reflectivity is r1 = r2 = r , and αi is the internal optical loss.
The injection current is I and e is the electron charge. As shown
in Fig. 1 calculations using (1) and (2) predict the threshold
behavior in mean photon number 〈s〉 with injection current I

smoothes with increasing β and disappears entirely for β = 1.
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FIG. 1. (Color online) Continuum mean-field rate-equation cal-
culation of mean photon number, 〈s〉, as a function of injection
current, I , for the indicated values of β showing transition to
“thresholdless” lasing in the limit β = 1. (a) log10〈s〉 as a function of
log10I. (b) 〈s〉 as a function of I . Parameters: V = (5 × 1 × 1 µm),
� = 0.25, a = 2.5 × 10−16 cm2 s−1, B ′ = 10−10 cm3 s−1, n0 =
1018 cm−3, αi = 10 cm−1, nr = 4, r = 0.999.

Figure 2 shows images of semiconductor lasers where con-
tinuum mean-field rate equations can be applied. Figure 2(a) is
a photograph of a conventional Fabry-Perot laser diode. Cavity
length is Lc = 300 µm, β = 5 × 10−5, and the active volume
is 15 µm3. The horizontal metal stripe makes contact with a
p-type semiconductor, the substrate is n-type, and six quantum
wells form the active volume at the diode p-n junction. The
device parameters are that of an In0.7Ga0.3As0.6P0.4 laser with
emission at 1310 nm wavelength [13]. Figure 2(b) shows a
microdisk laser [14] which has an active volume approximately
100 times smaller compared to that of the Fabry-Perot laser.
The much larger value of β = 10−1 for this device is achieved
by reducing optical cavity size.

The continuum mean-field rate equations, useful for large
and intermediate-sized systems, is an approximate calculation
of the first moment in the distribution of n and s. A description
using only the first moment 〈n〉 and 〈s〉 is not sufficient to
describe the behavior of lasers scaled to have small active
volumes. Any model of very small lasers should explicitly
include fluctuations and be able to calculate higher-order
moments in the distribution of n and s.

FIG. 2. (Color online) (a) Photograph from the top surface of a
typical Fabry-Perot laser diode with Lc = 300 µm and Ith = 3 mA.
Photon cavity round-trip time in the device is 8 ps. The horizontal
metal stripe makes electrical contact with a p-type semiconductor.
Gold wire bonds connect to the anode of the current supply, driving
the laser. The n-type semiconductor contact is made via the backside
of the semiconductor substrate. (b) Scanning electron microscope
image of an optically pumped microdisk laser. Image from [14].
Disk diameter is 1.6 µm and the photon cavity round-trip time
is 0.06 ps.

In principle, a quantum theory of laser operation can
incorporate these higher-order effects. However, the approx-
imations typically employed constrain them to either large-
scale systems or single atoms. The problem of a single
two-level atom in an optical cavity is solvable and has been
extensively studied in quantum optics [1,4,15,16]. In fact,
theoretical predictions for light emission from single atoms and
single quantum dots [17–19] in optical microcavities exhibit
interesting features such as self-quenching and squeezed light
emission. Extension of this approach to include multiatom
effects requires numerical computation. Unfortunately, the
number of system states scales as (2n)s, where n is the
number of two-level atoms present and s is the number of
cavity photons. Thus, the problem becomes computationally
challenging with increasing number of atoms inside the
cavity because the coefficient matrix is of order (4n)s × (4n)s.
Cases studied so far involve 1 or 2 atoms and solutions are
obtained numerically by truncating the coupled density matrix
equations [19]. Treatments involving arbitrary numbers of
excited states include approximations of a reservoir level,
which excludes interesting phenomena appearing in the small-
scale limit [20]. Systematic studies have also been performed
for micromasers where bulk and single particle effects (trapped
states) have been investigated [21] but the maximum number
of atoms simultaneously present in the cavity was limited to
5. By modifying the injection technique [22], up to 100 atoms
have been included in the cavity.

Here, we develop a description that quantizes particle
energy and allows study of meso-scale systems. Our approach
captures the most significant quantum effects in these small-
scale systems. In particular, it allows exploration of quantum
fluctuations and its impact on the behavior of small laser
diodes.

This article is organized as follows. In Sec. II we explore
the behavior of small lasers using a technique based on a
random walk method. Description of the method is followed
by calculation of the steady-state characteristics of meso-
scale devices. Convergence with continuum mean-field rate-
equation results is achieved for large systems. Sec. III discusses
the use of master equations to study similar systems. This
approach gives predictions in agreement with those of Sec. II.
Section IV applies the methods of Secs. II and III to the study
of transient characteristics. Section V addresses aspects of
experimental design and Sec. VI is a summary and describes
possible future directions.

II. RANDOM WALK TRAJECTORY

To capture the physics dominating the meso-scale behavior
of laser diode operation when there is only a small number
of excited states in the system, we have used a technique
based on a biased random walk or Monte-Carlo trajectory
[23]. Quantization of n discrete excited electronic states and s

discrete photons is achieved by assuming the system may be
described by the state (n, s).

Consider the system at time t = 0 containing n excited
two-level electronic states, each separated in energy by h̄ω

and s photons, each of energy h̄ω. Figure 3 illustrates the
transitions in and out of state (n, s). The term −βBn2

describes the spontaneous emission of photons involving
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FIG. 3. Transition rates in and out of quantum state (n, s).
Positive signs indicate flow into the state and negative signs flow
out of the state. B is the spontaneous emission coefficient, −Gns =
(a�cn/V nr)s is the stimulated emission rate in the system at photon
energy h̄ω, −As = (a�cn0/V nr)s is the stimulated absorption rate,
n0 is the transparency carrier number, c is the speed of light in vacuum,
� is the overlap of the optical field intensity with the gain medium, a

is the gain slope coefficient, and nr is the refractive index of the active
volume V . The total optical loss rate from the Fabry-Perot cavity is
κs = c

nr
[αi + 1

2Lc
ln( 1

r1r2
)]s, where r1 = r2 is the mirror reflectivity,

αi is the internal loss, and Lc is the cavity length. I is the injection
(pump) current and e is the electron charge.

transitions from state (n, s) to state (n − 1, s + 1), where
B = B ′/V and B ′ is the spontaneous emission coefficient.
−sGn describes stimulated emission of photons from state
(n, s) to state (n − 1, s + 1), where Gn is the stimulated
emission coefficient. −(1 − β)Bn2 is the decay of electrons
into nonlasing photons via transitions from state (n, s) to
state (n − 1, s). Current +I denotes injection of electrons
causing transitions from state (n, s) to state (n + 1, s). −As

is stimulated absorption of photons involving transitions from
state (n, s) to state (n + 1, s − 1), where A is the stimulated
absorption coefficient. −κs describes the decay of cavity
photons in which transitions from state (n, s) to state (n, s − 1)
occur, where κ is the optical loss coefficient.

The system evolves by transitioning between neighboring
states via the processes indicated in Fig. 3. The time constants,
τi , of all possible independent transitions involving the state
(n, s) are calculated. The next time step is calculated using
ti = −τi ln(RAND) where the subscript labels the channel and
RAND is a uniformly distributed random number between
zero and one. The channel with the lowest ti is chosen and
the system makes a move to the new state in time ti . The
process involves a series of biased random transitions on a grid
whose trajectories sample the continuous probability function
Pn,s for each state (n, s). Steady-state probability distribution
for a particular injection current is obtained by averaging
over multiple trajectories, where each trajectory consists of
millions of time steps. The probability of state (n, s) is Pn,s .
This probability is estimated from the relative time spent in
state (n, s).

Fluctuations and correlations are expected to have a strong
effect on the behavior of small lasers. Figure 4 shows steady-
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FIG. 4. (Color online) Steady-state characteristics. Mean photon
and electron number in the device plotted as a function of injection
current. Continuum mean-field rate-equation calculation (dashed line,
R.E.) compared with results from our random trajectory Monte-
Carlo technique (solid line, M.C.). (a, b) Fabry-Perot laser, (c, d)
microdisk laser, (e, f) laser with meso-scale active volume. Param-
eters for (a) and (b): V = (300 × 0.8 × 0.14 µm), � = 0.25, a =
2.5 × 10−16 cm2 s−1, B ′ = 10−10 cm3 s−1, Anr = 2 × 108 s−1, C =
10−29 cm6 s−1, n0 = 1018 cm−3, αi = 40 cm−1, nr = 3.3, r = 0.32,
β = 5 × 10−5. Parameters for (c) and (d): V = [π × (0.8 µm)2 ×
0.06 µm], � = 0.25, a = 2.5 × 10−16 cm2 s−1, B ′ = 10−10 cm3 s−1,
Anr = 2 × 108 s−1, C = 10−29 cm6 s−1, n0 = 1018 cm−3, αi =
10 cm−1, nr = 4, r = 0.999, β = 10−1. Parameters for (e) and
(f): V = (0.1 µm × 0.1 µm × 10 nm), � = 0.25, a = 2.5 ×
10−18 cm2 s−1, B ′ = 10−10 cm3 s−1, n0 = 1018 cm−3, αi = 1 cm−1,
nr = 4, r = 1 − 10−6, β = 10−4.

state characteristics for lasers with different active volumes.
Continuum mean-field rate-equation results are compared with
those obtained from the biased random walk technique. All the
devices considered operate in the limit where strong coherent
effects, such as Rabi oscillations, are absent [4,24].

Figures 4(a) and 4(b) show results for a Fabry-Perot laser
diode with β = 5 × 10−5 and active volume V = 33.6 µm3.
The expected classical laser threshold behavior and carrier pin-
ning above threshold is observed. Total optical output power
in mW at an operating emission wavelength of 1310 nm can be
determined by multiplying the photon number by 5.2 × 10−5.

Figures 4(c) and 4(d) give results for a microdisk laser with
active volume V = 0.12 µm3. Optical output power in µW
at 1310-nm wavelength is obtained by multiplying the photon
number by 7.1 × 10−3. The steady-state characteristics show
that the change in slope of 〈s〉 around the phase transition
region is considerably smoothed due to the large value of
β = 0.1.
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FIG. 5. (Color online) Time evolution of electrons and photons
calculated by a random trajectory. (a) Current, I = 9.6 nA, (b) I =
48 nA, (c) I = 72 nA, (d) I = 192 nA. The inset shows discrete step
changes in photon number with time. Parameters are as in Figs. 4(e)
and 4(f): V = (0.1 µm × 0.1 µm × 10 nm), � = 0.25, a = 2.5 ×
10−18 cm2 s−1, B ′ = 10−10 cm3 s−1, n0 = 1018 cm−3, αi = 1 cm−1,
nr = 4, r = 1 − 10−6, β = 10−4.

Figures 4(e) and 4(f) give the steady-state characteristics
of a laser where the active volume has been reduced to V =
10−4 µm3 and β = 10−4. Suppression of lasing is observed
along with depinning of carriers in the limit of small active
volume and small β values. Optical output power in nW at a
wavelength of 800 nm is obtained by multiplying the photon
number by 0.186.

Carrier depinning near threshold may be investigated
further by accounting for spontaneous emission of photons
into a nonlasing channel. The (1 − β) term (Fig. 3) populates
another channel containing s ′′ photons which decay at the same
rate as the cavity photons. This channel does not participate in
any stimulated photon processes.

Figure 5 shows trajectories calculated in the time domain
for different injection currents for a very small active volume
laser with parameters as in Figs. 4(e) and 4(f). The spontaneous
emission terms are also included in the calculation. The
calculated time-domain data in Figs. 5(a) and 5(b) show bursts
of photons because of the presence of large fluctuations and
the injection current is not great enough to sustain continu-
ous lasing. With increasing injection current, longer lasting
photon bursts result in a double-peaked average electron
distribution. This is well illustrated by the data in Fig. 5(c).
For operation near threshold switching occurs between two
different characteristic system states. Figure 5(d) is an example
of strong lasing with quantized photon fluctuations about a
mean value 〈s〉 = 136. This trajectory compares closely to
the Langevin trajectories generated by adding Gaussian noise
to the continuum mean-field rate equations. This analogy is
considered in greater detail in Sec. IV B. The average output
power from both cavity mirrors is around 25 nW at an operating
wavelength of 0.8 µm. In this case s ′′ = 9.5.

There is less noise in carrier number n in Fig. 5(a) when
there are essentially only electrons in the system and very few
lasing photons. As illustrated in Fig. 5(c), when both photons

and electrons are in the system the electron noise is enhanced
because photon noise couples into the electron distribution.
When the cavity empties of photons, the number of electrons
increases but the noise decreases. This is because noise coupled
into the electron system from the photons is no longer present.

The Fano factor, F , may be used to quantify photon
fluctuations:

F = σs
2/〈s〉, (3)

where σs is the standard deviation in photon number. The
phase transition in a conventional laser is accompanied by
large photon fluctuations and this quantity peaks sharply across
lasing threshold, Ith. For large injection currents, I � Ith,
the Fano factor approaches unity, corresponding to a Poisson
distribution. For small active volumes the sharp transition is
replaced by a broad peak in the Fano factor in the vicinity of the
threshold, and F > 1, indicating a non-Poisson distribution.

In Fig. 6 the steady-state laser characteristics of (i) a
large active volume device (V = 5 µm3), (ii) an intermediate
volume (V = 5 × 10−3 µm3), and (iii) a small volume (V =
10−4 µm3) are shown. The data are normalized to the large
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FIG. 6. (Color online) Comparison of steady-state laser charac-
teristics for three different active volumes. (a) Normalized mean
photon number versus current. (b) Normalized mean electron
number versus current. (c) Normalized Fano factor versus current.
(d) Normalized spontaneous emission photon number versus current.
(i) Results for a large active volume, (ii) an intermediate-size active
volume, (iii) a small active volume (Fig. 5). The calculations for
the large active volume device matches the continuum mean-field
rate-equation data closely. The current values are normalized by
dividing by the respective threshold currents predicted by continuum
mean-field rate equations (Ith−i = 112 µA, Ith−ii = 320 nA, Ith−iii =
12.8 nA). Normalization constants, N are: mean photon number,
Nsi = 1, Nsii = 350, Nsiii = 800; mean electron number, Nni =
1, Nnii = 607, Nniii = 21594. Mean spontaneous emission photon
number, Ns′′

i = 1, Ns′′
ii = 370, Ns′′

iii = 855. Fano factor, NFi =
1, NFii = 1, NFiii = 10. Parameters: Vi = (5 × 1 × 1 µm), Vii =
(5 µm × 0.1 µm × 10 nm), Viii = (0.1 µm × 0.1 µm × 10 nm),
�i,iii = 0.25, �ii = 0.05, ai,ii = 2.5 × 10−16 cm2 s−1, aiii = 2.5 ×
10−18 cm2 s−1, B ′ = 10−10 cm3 s−1, n0 = 1018 cm−3, αi = 10 cm−1

for (i,ii), αi = 1 cm−1 for (iii), nr = 4, ri,ii = 0.999, riii = 1 − 10−6,
and β = 10−4.
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active volume device continuum mean-field rate-equation
predictions for 〈n〉 and 〈s〉. Figure 6(a) compares 〈s〉 as
a function of I between different cavities and convergence
with the continuum mean-field rate equations is achieved
for the largest cavity. Lasing is increasingly suppressed with
the reduction of active volume. The normalized Fano factor
as a function of normalized current exhibits a peak around
the threshold region. As expected, the largest active volume
device exhibits the sharpest threshold behavior. In general,
the peak identifies the presence of strong fluctuations and
non-Poisson photon statistics around threshold. Carrier de-
pinning accompanies photon fluctuations, as demonstrated by
Fig. 6(b). Figure 6(d) shows enhanced spontaneous emission
across threshold resulting from the extra carriers contributed
by carrier depinning. An explanation of lasing suppression,
enhanced spontaneous emission and depinning of carriers may
be found in the time-domain data illustrated in Fig. 5(c). The
system fails to lase continuously in this region and switches
between the lasing and nonlasing state. Once the system shuts
down, it waits for the next spontaneous emission event to
reinitiate lasing. Lasing, being predominantly a stimulated
process, requires the presence of photons in the cavity. A
larger active volume with a larger number of electrons has
more spontaneous emission events, which prevents lasing
shutdown. A smaller active volume, with lesser likelihood
of such events, experiences suppression of continuous lasing.
Lasing shutdown is accompanied by depinning of carriers,
which in turn enhances spontaneous emission.

III. MASTER EQUATIONS

The predictions of the biased random walk technique can
be verified independently by use of coupled deterministic dif-
ferential equations that quantize particle number. Previously,
such master equations have been solved to explore steady-state
behavior in the limit of cavity quantum electrodynamics
for which β = 1 [25,26]. Biased random walk trajectories
in (n, s) space can be used to sample solutions of master
equations.

The equation describing time evolution of probability Pn,s

of states (n, s) in a single-mode semiconductor laser diode
with photon emission at energy h̄ω is of the form

dPn,s

dt
= − κ[sPn,s − (s + 1)Pn,s+1] − [sGnPn,s

− (s − 1)Gn+1Pn+1,s−1] − [sAPn,s

− (s + 1)APn−1,s+1] − βB[n2Pn,s

− (n + 1)2Pn+1,s−1] − (1 − β)B[n2Pn,s

− (n + 1)2Pn+1,s] − I

e
(Pn,s − Pn−1,s), (4)

where the active volume is V and the device is driven by current
I . The term −βBn2Pn,s(t) describes spontaneous emission
of photons involving transitions from state (n, s) to state
(n − 1, s + 1), where B = B ′/V and B ′ is the spontaneous
emission coefficient. −sGnPn,s(t) describes stimulated emis-
sion of photons from state (n, s) to state (n − 1, s + 1), where
Gn is the stimulated emission coefficient. −(1 − β)Bn2Pn,s(t)
is the decay of electrons into nonlasing photons via transitions
from state (n, s) to state (n − 1, s). −IPn,s(t) corresponds

to injection of electrons causing transitions from state (n, s)
to state (n + 1, s). −AsPn,s(t) is stimulated absorption of
photons involving transitions from state (n, s) to state (n +
1, s − 1), where A is the stimulated absorption coefficient.
−κsPn,s(t) describes the decay of cavity photons in which
transitions from state (n, s) to state (n, s − 1) occur, where κ

is the optical loss coefficient.
The time evolution of Pn,s can be solved by integrating

(4). Pn,s may also be solved under steady-state conditions
by truncating the system at values of n and s which are
much larger than the steady-state mean values predicted by the
continuum mean-field rate equations [25–27]. The equations
governing the mean behavior are derived by averaging the
master equations over all possible states, after multiplying by
n and s. This gives

d〈n〉
dt

= −B〈n2〉 − a�c

V nr
〈(n − n0)s〉 + I

e
, (5)

d〈s〉
dt

= βB〈n2〉 + a�c

V nr
〈(n − n0)s〉 − κ〈s〉, (6)

which reduces to the standard continuum mean-field rate
equations if the correlations factorize such that 〈(n − n0)s〉 =
〈(n − n0)〉〈s〉 and 〈n2〉 = 〈n〉2. The second approximation
is valid in the case of narrow, symmetric single-peaked
distributions in n. A system involving a small number of
particles experiences strong fluctuations in particle number
and correlations between n and s are significant. Hence, such
mean-field approximations are not valid, leading to predictions
of mean behavior that are different from a more complete
probabilistic picture.

Figure 7 illustrates some of the essential differences by
showing the results of calculating the steady-state character-
istics with master equations (M.E.) and continuum mean-field
rate equations (R.E.). The 〈ns〉 correlation differs most from
its factorized product 〈n〉〈s〉 around threshold [Fig. 7(d)]
and the master equations accounting for these correlations
differ significantly in its predictions. In particular, it leads
to suppression of lasing by increasing the apparent threshold
current [Fig. 7(a)] and depinning of carriers [Fig. 7(b)].
Assuming the value of current at the Fano-factor peak may
be used as a measure of laser threshold [24], Fig. 7(c) gives
a threshold Ith = 45 nA, which is 4.5 times greater than the
value of Ith = 10 nA predicted by continuum mean-field rate
equations. The differences reduce as one scales to a larger
number of particles in the limit of conventional laser operation
and this was indeed verified by master-equation calculations
performed for a system with parameters similar to those in
Fig. 7 but with a higher value of β. Figures 7(e) and 7(f) show
the probability distribution of photons Ps and electrons Pn for
different stages of laser operation. At low injection currents, Ps

is bimodal with a large probability for occupation of the photon
ground state, s = 0. This indicates that quantum fluctuations
cause lasing emission to turn off. The probability distribution
for Ps and Pn near Ith is bimodal, confirming the existence of
the two characteristic system states. Only when I � Ith do Ps

and Pn become single peaked. The probability distribution for
these injection currents obtained from the master equations are
in agreement with results of the trajectory method shown in
Fig. 5. In the long-time limit, trajectories in the (n, s) plane are
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FIG. 7. (Color online) Steady-state characteristics. (a) Calculated mean photon number as a function of current showing that master
equations (M.E.) predict suppression of lasing threshold relative to continuum mean-field rate-equation (R.E.) calculations. Suppression in
lasing is due to quantum fluctuations. (b) Calculated mean electron number as a function of current. M.E. show carrier depinning due to
quantum fluctuations. (c) Fano factor F = σ 2

s /〈s〉 as a function of current, I . (d) Electron-photon correlation and product of means versus
current. (e) Probability of photons for different currents. (f) Probability of electrons for different currents. Parameters are as in Fig. 5. Figures
are from [23].

found to converge to the predictions of the master equations
(Fig. 8).

Computational convenience dictates the choice of parame-
ters used for solving the master equations. Realistic parameters
increase number of particles, which in turn leads to a large
number of probability states. For total number of particles N ,
the number of probability states is D = (N + 1)(N + 2)/2 and
this grows as N2 for large N . For N = 1000 the probability
vector has a length of 0.5 × 106. Matrix inversion for steady-
state calculation and multiplication for time evolution becomes
difficult when the size of the coefficient matrix (D2) increases
significantly beyond this value.

Despite the use of small values of n and s, the underlying
physics in which quantum fluctuations suppress lasing and
carriers are depinned remain. This is confirmed by calculations
using the trajectory method which was developed to connect
with large systems described by realistic parameters. The
technique verifies master-equation results and predicts similar
behavior in small systems with experimentally accessible
parameters (see Sec. V).

Similar to the trajectory method, the master equations can
be modified to include spontaneous emission of photons into
a nonlasing channel. The spontaneous emission channel does
not participate in any stimulated processes and so avoids the
correlation effects that strongly influence lasing emission. The
master equation for probability Pn,s,s ′′ (t) is (4), with additional
terms (1 − β)Bn2Pn,s,s ′′ corresponding to decay of electrons
into photons of the nonlasing channel, causing a transition from
state (n, s, s ′′) to (n − 1, s, s ′′ + 1), and κs ′′Pn,s,s ′′ denoting
decay of nonlasing photons, causing a transition from state
(n, s, s ′′) to (n, s, s ′′ − 1). The average value for n and s

obtained using Pn,s,s ′′ (t) gives Eqs. (5) and (6), respectively.

The average for s ′′ is

d〈s ′′〉
dt

= (1 − β)B〈n2〉 − κ〈s ′′〉. (7)

Large fluctuations and correlations in particle number in
the finite-sized quantum system lead to carrier depinning
near threshold and the increased average number of carriers
results in enhanced spontaneous emission because of the
(1 − β)Bn2 dependence. This is verified by the trajectory
method [Fig. 6(d)]. A similar plot using master-equation
calculations is avoided for numerical reasons. The system
has a larger number of probability states due to the presence
of this additional channel of spontaneously emitted photons.
However, a similar idea may be demonstrated by studying
the role of β in distributing the total emission between two
modes. Larger β enhances spontaneous emission into the
lasing mode and prevents lasing shutdown. Reducing β has
the opposite effect. Figure 8 demonstrates this for a small
active volume. As β is reduced, while keeping the current
constant, the emission switches from being dominated by
lasing to being dominated by spontaneous emission. This leads
to lasing suppression. The peak at higher electron number in
the bimodal distribution corresponding to zero lasing photons
gives rise to enhanced spontaneous emission. The distribution
of spontaneous emission as shown in Figs. 8(c) and 8(d) is
symmetric in the absence of diagonal processes illustrated in
the state diagram shown in Fig. 3. The active volumes used
for calculations whose results are shown in Figs. 8(a)–8(d) are
chosen for computational convenience. The same calculations
have been repeated using the trajectory method for a larger
system and a similar behavior is observed with change of β.
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FIG. 8. (Color online) Steady-state
probability distribution for electrons (n),
photons (s), and spontaneous emission
(s ′′) for different values of β and a fixed
current I = 10 electron/ns (=1.6 nA) for
(a), (b), (c), and (d) and 72 nA for (e),
(f), (g), and (h). (a) and (e) β = 1, (b)
and (f) β = 10−1, (c) and (g) β = 10−2,
(d) and (h) β = 10−4. Parameters for (a),
(b), (c), and (d) are as in Fig. 5 but
with V = (1 µm × 1 nm × 1 nm) and
αi = 0.19 cm−1. Parameters for (e), (f),
(g), and (h) are as in Fig. 5. The color
(gray) scale is log10.

IV. TRANSIENT DYNAMICS IN SMALL LASERS

To solve the transient master equation, the entire time
evolution is divided into equal time intervals, the duration
of which is determined by the inverse of the pumping rate.
This allows only a single electron to enter the active volume
on average in a given time interval. If we start with an
empty device [i.e., P0,0(t = 0) = 1], the terms which will be
important in the first time interval are P0,0, P0,1, P1,0. This
happens because a system of n electrons and s photons can
only undergo processes and make single quantum transitions

as described in Fig. 3. We integrate the set of master equations
involving these terms using the fourth-order Runge-Kutta
method for the first interval. In the next interval the maximum
number of particles is 2. So terms such as P1,1, P0,2, P2,0 will
be important along with the terms of the previous interval. With
the addition of the nth electron, n + 1 additional probability
states are added and the coefficient matrix grows as D2. For
a given interval the process is similar to a continuous-time
Markov process where the allowed states are the states of
the continuous-time Markov chains. The system of equations
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FIG. 9. (Color online) Transient behavior of mean electron num-
ber and photon number for a step change in current from I (t < 0) = 0
to I (t � 0) = 100 electrons/ns ( 16 nA) for (a) and (b) and I (t � 0) =
400 electrons/ns (=64 nA) for (c) and (d). (a) Mean photon number
as a function of time. (b) Mean electron number as a function of
time. The dot at the last time point denotes the mean calculated from
the probability distribution obtained by the steady-state technique.
Parameters as in Fig. 5 but with V = (0.1 µm × 10 nm × 10 nm)
and β = 10−1. (c) Mean photon number as a function of time.
(d) Mean electron number as a function of time. Parameters as in
Fig. 5 but with β = 10−1. Panels (a) and (b) are from [23].

is such that total probability is conserved in every step as
more electrons enter the system. Iterations are continued by
adding more particles until the system attains a steady-state
probability distribution. The steady state attained agrees with
the one obtained from the truncated master equations solved
under steady-state conditions.

Figures 9(a) and 9(b) show the time evolution of 〈n〉 and
〈s〉 for a small laser operating above threshold. Factorization
of the correlation 〈ns〉 is not appropriate, as reflected by the
fact that the continuum mean-field rate-equation results do
not converge to the master-equations solution. Figures 10(b)
and 10(c) show that at any point in time the instantaneous
probability Pn,s carries information about the path taken. In

contrast, averaging in the continuum mean-field rate-equation
calculation removes information about the system’s history.

Strong correlations and fluctuations affect the average
response of a small laser to a step change in injection current
and slows down the system in general. Increasing the active
volume, keeping other parameters fixed, reduces the difference
with the mean-field predictions [Figs. 9(c) and 9(d)].

A. Large-signal analysis

A large-signal analysis may be performed by starting from
the system ground state and observing the response to a
step change in injection current. The time delay, td, may be
calculated by starting from an empty device (n, s = 0) and
noting the time taken to reach half the steady-state photon
number. The mean time, 〈td〉MC, calculated by averaging td for
multiple trajectories obtained using the trajectory method, is
found to be in close agreement with that predicted by master
equations. This is denoted by the dot in Fig. 11(a), which shows
the agreement and a mean time delay 〈td〉MC that is greater
than the predictions of the continuum mean-field rate-equation
theories, 〈td〉RE. These calculations are carried out for injection
currents which support continuous lasing and hence are far
away from the fluctuation dominated regime [Fig. 5(c)].
The peak of the Fano factor for the lasers considered in
Figs. 11(b), 11(c), and 11(d) occur around 0.6, 8, and 150 µA,
respectively, and injection current chosen for this analysis is
higher than that. The Fano-factor peak gives an estimate of the
threshold for these small devices [24]. Figures 11(b), 11(c),
and 11(d) show a comparison of time delay for three different
active volumes and convergence with continuum mean-field
rate equations is achieved for the largest volume [Fig. 11(d)].
The deviation from the mean-field calculations reduces with
increase in active volume size.

B. Small-signal analysis

Above threshold the biased random walk trajectory in the
time domain [Fig. 5(d)] appears similar to the trajectories
produced by Langevin equations as described in [28]. The
Fourier transform of this data is computed to obtain small-
signal relative intensity noise (RIN) data. Such time-domain
analysis is not possible using master equations.
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FIG. 10. (Color online) Transient behavior of mean electron number and photon number for a step change in current from I (t < 0) = 0
to I (t � 0) = 100 electrons/ns (=16 nA). (a) Evolution of mean photon number as a function of mean electron number, calculated from
continuum mean-field rate equations. (b) Pn,s calculated at time t = 1.25 ns and indicated by circle labeled 1 in (a). (c) Pn,s calculated at time
t = 5 ns and indicated by circle labeled 2 in (a). Parameters are as in Fig. 5 but with V = (0.1 µm × 10 nm × 10 nm) and β = 10−1. The color
(gray) scale is log10. Panels (b) and (c) are from [23].
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FIG. 11. (Color online) Comparison of time delay, td, between
continuum mean-field rate equations and random walk approach.
(a) Transient behavior of mean photon number for a step change in
current from I (t < 0) = 0 A to I (t � 0) = 16 nA. Time delay 〈td〉
comparison for (b) V = 5 × 10−4 µm3, (c) V = 5 × 10−2 µm3, and
(d) V = 5 µm3. Parameters: (a) V = (0.1 µm × 10 nm × 10 nm),
� = 0.25, a = 2.5 × 10−18 cm2 s−1, B ′ = 10−10 cm3 s−1, n0 =
1018 cm−3, αi = 1 cm−1, nr = 4, r = 1 − 10−6, β = 10−1. (b) V =
(5 × 0.01 × 0.01 µm), � = 0.25, a = 2.5 × 10−16 cm2 s−1, B ′ =
10−10 cm3 s−1, n0 = 1018 cm−3, αi = 10 cm−1, nr = 4, r = 0.999,
β = 10−4. (c) V = (5 × 0.1 × 0.1 µm); other parameters same as in
(b). (d) V = (5 × 1 × 1 µm); other parameters are as in (b).

Figures 12(a) and 12(b) show the time trajectories calcu-
lated using our trajectory method and Langevin equations,
respectively. The fluctuations in photon number are noticeably
larger in Fig. 12(a) than in Fig. 12(b). Our trajectory calcula-
tions show larger fluctuations and hence larger Fano factors
and this trend is observed in smaller active volume lasers as
well.

The Langevin equations consider correlated noise terms
which are artificially forced to be Gaussian in nature. This
gives rise to considerably lower values of Fano factor in the
threshold region. The Langevin approach arbitrarily assumes
near Poisson distributions which is physically unrealistic in
the correlated system we consider. The distributions obtained
from the trajectory technique are not biased to be Gaussian and

are, in fact, super-Poissonian with a much larger Fano factor
even when the system is lasing continuously. For example,
for a current of 400 µA, which is 2.7 times threshold current,
Langevin equations give a Fano factor of about 12 and our
trajectory method gives a Fano factor of near 270.

The response in the frequency domain was compared
with the RIN data obtained from Langevin equations with
cross-correlated noise sources [28]. The frequency response
calculated using the two models agrees around the RIN peak
and when the system is in the lasing state [Fig. 12(c)]. The peak
in frequency increases with electron injection current. There
are, however, differences at frequencies below the RIN peak.
These can be brought into closer agreement by increasing the
magnitude of the Langevin noise terms.

V. EXPERIMENTAL DESIGN

The behavior of lasers with very small active volumes
can be studied using semiconductor nanowire [29], quantum
pillar [30], or other geometries [31,32]. The active medium
may be confined inside a high-Q photonic crystal or other
optical cavity. Reducing the size of the laser is generally
accompanied by an increase in β. However, small β is an
important factor leading to lasing suppression and might
explain why suppression of lasing by quantum fluctuations
has not been observed in experiments.

We have performed calculations to find experimentally ac-
cessible conditions where the impact of quantum fluctuations
on laser performance may be observed. Figures 13(a) and 13(b)
show calculations for a system of three nanowires confined in
a photonic crystal medium. Parameters chosen are similar to
those considered by [29]. The lasing suppression is seen to
disappear with the increase in β. The carrier depinning effect,
however, persists longer and can be observed in spontaneous
emission. So one of the key directions for design is to have
strong confinement for the single lasing mode along with
significant emission into the nonlasing modes. For a nanowire
system this would mean strong confinement in the axial
direction for the laser mode with spontaneous emission in the
lateral directions. Reduction in β by increasing the optical
cavity length is also considered in Figs. 13(c) and 13(d).
Other than an overall change in the threshold value, these
laser designs show a similar trend with change of β.
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FIG. 12. (Color online) (a) Time trajectory calculated using the random walk technique. (b) Time trajectory from the Langevin equations
using correlated noise sources. (c) Relative intensity noise (RIN) as a function of frequency. Calculation using Langevin equations (dashed
lines), random walk calculation (solid lines). Calculations are normalized to peak in spectrum. Electron injection current = 400 µA (dark
curve), 800 µA (gray curve), 1.32 mA (light gray curve). Parameters are as in Fig. 11(d).
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FIG. 13. (Color online) Comparison of steady-state characteris-
tics for different β values. β = 10−3 (solid), β = 10−2 (dashed),
β = 10−1 (dot), β = 1 (dash-dot). β = 10−4 (solid, dark line)
is included in (c) and (d) for a larger size cavity. The graphs
display random trajectory calculations. Parameters for (a) and
(b): V = 3 × (1 µm × 5 nm × 5 nm), � = 0.01, a = 12.3 ×
10−16 cm2 s−1, B ′ = 5.5 × 10−10 cm3 s−1, Anr = 0.91 × 109 s−1,
C = 0.5 × 10−29 cm6 s−1, n0 = 1018 cm−3, αi = 0.0010 cm−1,
nr = 3.5, r = 0.997, ε = 0.01 × 10−18 cm3. Parameters for (c) and
(d): V = 3 × (6 µm × 5 nm × 5 nm), � = 0.004, αi = 5 cm−1,
r = 0.995; others are as in (a) and (b). Net optical output power in
µW at an operating wavelength of 1310 nm may be determined by
multiplying the photon number by 0.039 for (a) and (b) and 0.0109
for (c) and (d).
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continuum mean-field rate-equation calculations. β = 10−4 for main
figure. The inset is a comparison of steady-state characteristics for
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for an operating wavelength of 1310 nm. Parameters are as in
Fig. 13(c).
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FIG. 15. (Color online) Comparison of steady-state characteris-
tics for different β values. β = 10−4 (solid, dark line), β = 10−3

(solid), β = 10−2 (dashed), β = 10−1 (dotted), β = 1 (dash-dotted).
Thicker lines are results of random walk calculation; thinner lines
are from the continuum mean-field calculations. (a) Intracavity mean
photon number, (b) output optical power versus injection current.
Parameters are as in Figs. 13(c) and 13(d).

The threshold current, Ith, for the laser considered in
Figs. 13(c) and 13(d) is shown in Fig. 14 as a function of
cavity length, Lc. In this case, changing the cavity length
alters the active volume. The rate-equation data are compared
with the random walk trajectory calculation. Only the case
with β = 10−4 is considered. The peak of the Fano factor is
used to locate the threshold current in the random trajectory
calculations. Threshold current is larger than the predictions of
continuum mean-field rate equations due to lasing suppression.
The light output characteristics of the laser with Lc = 6 µm
is considered in the inset. This has a threshold current around
2 µA and optical output power is in the µW range. As expected,
the pinned carrier number has a linear dependence on the cavity
length, Lc.

Figure 15 is a plot of steady-state characteristics using a
log10 scale. These correspond to the linear plot of Fig. 13(c).
Strong quantum fluctuations around threshold smooth the
nonlasing-to-lasing transition compared to a more abrupt
crossover predicted by the continuum mean-field theories.
This is seen for the small β cases where the effects of lasing
suppression becomes apparent.

VI. CONCLUSION AND OUTLOOK

In conclusion, our calculations illustrate the importance
of quantum fluctuations in determining the steady-state and
transient responses of a laser when there are a small number
of particles in the system. Quantum fluctuations can suppress
lasing threshold, enhance spontaneous emission, and create
a non-Poisson probability distribution for n discrete excited
electronic states and s discrete photons. Correlations between
n and s are found to damp the average dynamic response
of laser emission. Fluctuations in the finite-sized quantum
system behave differently from lasers in the thermodynamic
limit. According to the conventional Landau-Ginzburg theory
of phase transitions, fluctuations in the large particle number
limit enhance lasing below threshold. In meso-scale systems
the opposite is true; quantum fluctuations suppress lasing.

The master equations and the random walk technique
generate statistics of the photon field but do not include
phase as they only quantize energy. Phase fluctuation carries
information about linewidth of the lasing mode. Inclusion
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of phase in a fully quantum mechanical model solved by
brute-force methods is challenging due to the extremely large
state space for the system. A possible approach might be to
solve for a few atoms in the optical cavity and then attempt to
develop techniques capable of solving the problem for larger
numbers of particles based on the physical insight gained.
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