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Abstract. The adjoint method is used to efficiently and accurately compute gradients with
respect to the design parameters in the identification of optimal designs of electronic devices whose
physical behavior is determined by solutions of the Schrödinger equation. In this study, the optimal
design problem is formulated as the minimization of a least-squares performance metric. Key to our
approach is the use of finite dimensional approximation based on the propagation matrix method and
the reformulation of the underlying boundary value problem for an approximating time-independent
Schrödinger equation as a terminal value problem. In this way the efficient computation of highly
accurate gradients (i.e., with zero truncation error) required for optimization becomes amenable to
the use of the adjoint method as it is typically applied in the context of evolution equations. The
numerical stability of the method and the convergence of the approximating solutions to the state
equations and their gradients with respect to the design parameters as well as the convergence of the
solutions to the optimal design problems themselves are all rigorously established.
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1. Introduction. Nonconvex optimal design can be used to discover nonintu-
itive configurations of atoms, molecules, and nanoparticles with a desired function-
ality determined by quantum mechanics [1]. A significant challenge in adoption of
this methodology is the creation of computationally efficient design tools. With this
in mind, we develop an efficient and accurate scheme for the determination of locally
optimal designs for a prototype electronic device. More specifically we consider the
optimal design of an electronic semiconductor device whose conduction band potential
profile V (x ) can be fabricated with great accuracy in the crystal growth direction x.
The design parameters are the values of the potential at each atomic layer, and the
design criterion is a desired functional relationship between an applied voltage bias
Vbias and electron transmission T . In the case of a resistor, by virtue of Ohm’s law,
this functional relationship is linear. Here, on the other hand, we are interested in
devices that yield much more general functional relationships.

The determination of an optimal design will involve the solution of a constrained
minimization or maximization problem in which the constraints involve solutions to
boundary value problems for dynamical systems. Moreover, the design parameters
will appear as coefficients, inputs, gains, etc. in the underlying differential equations.
Our approach will use a form of the adjoint method to efficiently and accurately
compute gradients with respect to these design parameters that are required when
the resulting optimization problems are (necessarily) numerically solved. Key to our
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approach is the use of finite dimensional approximation based on the propagation
matrix method and the reformulation of the underlying boundary value problem for
an approximating time-independent equation as a terminal value problem. In this
way the efficient computation of highly accurate gradients required for optimization
becomes amenable to the use of the adjoint method as it is typically applied in the
context of evolution equations. We are able to rigorously establish the numerical
stability of the method and the convergence of the approximating solutions to the
state equations and their gradients with respect to the design parameters as well
as the convergence of the solutions to the resulting approximating optimal design
problems to an optimal design for the original infinite dimensional device.

Practical implementations of our designs will likely exploit the fact that V (x ) in
modern semiconductor materials such as AlξGa1−ξAs can be controlled with atomic
layer precision in the x direction using techniques such as molecular beam epitaxy.
In AlξGa1−ξAs the average value of local potential energy in each atomic monolayer
is determined by the fraction ξ of Al. The behavior of electronic devices with lay-
ers that are a few nanometers thick may often be characterized by ballistic electron
transmission probability T , as a function of applied voltage bias Vbias. (The precise
definition of the transmission coefficient T is given in section 2).

We formulate a design problem in terms of identifying designs for V (x ) that
result in locally optimal electron transmission characteristics T = T (Vbias). The
design criterion is formulated in terms of the squared difference between the desired
and observed performance of the device. We solve the optimal design problem by
seeking local minima via a gradient-based search.

Although in classical optimal design there is an obvious preference for global
minima, in the problem of interest to us here, we are motivated to develop highly
efficient methods for identifying local minima. The parameter space can be of high
dimension, and the optimization landscape can be rather complex and nonconvex.
Consequently, a truly random search technique for a global optimum, such as a ge-
netic algorithm, is likely to be untenable. A more pragmatic approach is a highly
efficient local exploration of potentially promising subsets of the design space first
identified by parallelized random search. In light of this, we have concentrated our
efforts on developing numerically stable, convergent, and computationally efficient
methods for evaluating the gradient of the performance index with respect to the
design parameters.

The underlying physics of a nanoscale device are at the quantum level, and there-
fore the performance constraints will be described by the Schrödinger equation. When
the underlying constraints involve differential equations, one typically relies on some
form of finite-difference approximation to make the optimization problem amenable
to numerical solution and to make use of the adjoint method to facilitate efficient and
accurate computation of gradients. In such cases, careful attention must be paid to
convergence and stability. For the design problem of particular interest to us here, we
have developed a numerically stable and convergent reformulation and approximation
of the underlying two-point boundary value problem constraints as a discrete terminal
value problem that allows us to maximally exploit the power of the adjoint method
for the efficient and exact (i.e., no truncation error) computation of gradients.

The optimal design of nanoscale devices of the type of interest to us here has
been studied previously by different authors in [2] and [3]. The work we report on is
most closely related to the effort described in [2], where an exhaustive search method
was used to solve the optimization problem that results when the design problem is
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formulated as a nonlinear least-squares fit to a desired performance. This approach
is highly computationally intensive and hence impractical for implementation as a
design tool.

In [3] the authors propose a sequential linear programming–based algorithm for
finding the potential energy profile that produces the desired transmission coefficient
performance in the presence of parameter uncertainty. They formulate an appropriate
robust stochastic optimization problem for which their sequential linear programming
scheme can be used to find locally optimal solutions. In so far as both our approach
and the approach taken in [3] find local optima, it is worth noting that for the same
design problem, the two schemes find similar but not identical optimal potential pro-
files.

A brief outline of the paper is as follows. In section 2 we define and formulate
the optimal layered potential design problem of interest to us here. In particular,
we present the quantum mechanical basis for the underlying physics of the devices
we are interested in designing and precisely formulate the performance measure we
wish to optimize in terms of the transmission function or coefficient. In section 3
we develop a finite dimensional approximation scheme for the underlying two-point
boundary value problem that must be solved to evaluate the transmission function,
and we show how it can be combined with a computationally efficient adjoint method
for computing the analytic gradients used to find locally optimal potential profiles. In
section 4 we demonstrate the numerical stability of our method, and we establish a
subsequential convergence result for the sequence of approximating optimal potential
profiles as the level of discretization tends to infinity. We establish the differentia-
bility of the approximating optimal design least-squares performance indices and the
convergence of their gradients. In section 5 we present the results of some of our
numerical studies in which we determine locally optimal potential profiles for devices
exhibiting linear, quadratic, and square root transmission characteristics. Section 6
includes some discussion of our results and a few concluding remarks.

2. The optimal design problem. We consider a layered nanoscale semicon-
ductor electronic device schematically configured as shown in Figure 2.1. The device
is assumed to be of total thickness L and to consist of N layers. For i = 1, 2, . . . , N ,
the ith layer begins and ends at positions xi−1 and xi, respectively, and is of thickness
Li = xi − xi−1. It follows therefore that xN − x0 = L. The local potential energy in
the ith barrier layer is assumed to be Ui, with i = 1, 2, . . . , N . For x < x0, the local
potential energy is assumed to be U0, and for x > xN , it is assumed to be UN+1. We
assume that a single electron propagating from −∞ is incident upon the left boundary
of the device at x0 and that a voltage bias Vbias is applied across the device.

Typically, application of the voltage bias illustrated in Figure 2.1 has the effect of
creating an accumulation of charge on the left side of the barrier layers and a depletion
region on the far right. Obtaining the precise form of the resulting potential energy
profile V (x ) requires the solution of an appropriate Poisson equation [4]. However, for
our purposes here, we assume that the thickness of the depletion and accumulation
layers is sufficiently small so as to allow for linear approximation. Consequently, the
static potential energy profile takes the form

(2.1) V (x) = V (x;U, Vbias) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

U0, −∞ < x < x0,
N∑
j=1

Ujχj (x)− Vbias
x−x0

L , x0 ≤ x ≤ xN ,

UN+1 − Vbias, xN < x <∞,
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Fig. 2.1. A layered nanoscale semiconductor device (left) and the device with a bias voltage
Vbias applied across it (right).

where U = {Ui}Ni=1 describes the local layer potentials. For each j = 1, 2, . . . , N, χj
is the characteristic function corresponding to the j th subinterval, [xj−1, xj ]. That is,

χj (x) =

{
1,
0

xj−1 ≤ x < xj ,
otherwise.

The interaction of the electron with the potential V (x ) is described by solving for the
electron wave function Ψ in the Schrödinger equation

(2.2) − �
2

2m0

∂2Ψ(x, t)

∂x2
+ V (x) Ψ (x, t) = i�

∂Ψ(x, t)

∂t
,

where � = 1.05492× 10−34 J is Planck’s constant, m0 = 9.10938188× 10−31 kg is the
bare electron mass, and i =

√−1. In a semiconductor the bare electron mass is often
replaced by an effective electron mass m∗. Charge density flux ∂ρe(x, t)/∂t is given
by [5]

∂ρe
∂t

=
∂ |Ψ|2
∂t

=
∂
(
Ψ̄Ψ

)
∂t

= Ψ̄
∂Ψ

∂t
+Ψ

∂Ψ̄

∂t

= Ψ̄

{
− �

2m0i

∂2Ψ

∂x2
+

1

i�
V (x)Ψ

}
+Ψ

{
�

2m0i

∂2Ψ̄

∂x2
− 1

i�
V (x) Ψ̄

}

= − ∂

∂x

�

2m0i

{
Ψ̄
∂Ψ

∂x
−Ψ

∂Ψ̄

∂x

}
,(2.3)

where unit electron charge is assumed, the potential energy function V (x ) is taken
to be real, and we make use of the Schrödinger equation (2.2). If we define current
density ĵ = ĵ (x, t) by

(2.4) ĵ (x, t) =
�

2m0i

{
Ψ̄ (x, t)

∂Ψ(x, t)

∂x
−Ψ(t, x)

∂Ψ̄ (x, t)

∂x

}
,

(2.3) and (2.4) together then yield the differential relation

(2.5)
∂ρe
∂t

+
∂ĵ

∂x
= 0,
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which is a continuity equation. In this way, (2.5) becomes a statement of conservation
of current.

The transmission coefficient T of the device is then defined to be a ratio of current
densities as

(2.6) T = T (Vbias,U) =

∣∣∣ĵtrans∣∣∣∣∣∣ĵinc∣∣∣ ,

where ĵtrans is the current density transmitted from the device at x = xN and ĵinc
denotes the current density incident upon the device at x = x0.

Since the potential V (x ) is independent of time, (2.2) admits a solution of the
form Ψ (x, t) = ψ (x)ϕ (t) which can be found via separation of variables. The time-
dependent factor, ϕ (t), must satisfy the equation

i�
∂ϕ (t)

∂t
= Eϕ (t)

and is therefore given by

(2.7) ϕ (t) = e−iE
�
t,

where E, the separation constant, is the sum of electron kinetic and potential energy.
For the conservative system we consider, energy E is a constant of the electron motion.
The time-independent wave function ψ (x) is then found as the solution to the second-
order ordinary differential equation (time-independent Schrödinger equation) given by

(2.8) − �
2

2m0

d2ψ (x)

dx2
+ V (x)ψ (x) = Eψ (x) .

With the potential V (x ) as given in (2.1), on the intervals −∞ < x < x0 and
xN < x <∞, the general solution to (2.8) is given by

(2.9) ψ0 (x) = A0e
ik0x +B0e

−ik0x

and

(2.10) ψN+1 (x) = AN+1e
ikN+1(x−xN ) +BN+1e

−ikN+1(x−xN ),

respectively, where k20 = 2m0(E−U0)
�2 , k2N+1 = 2m0(E−UN+1+Vbias)

�2 , and the in general
complex coefficients, A0, B0, AN+1, BN+1, are determined by the boundary condi-
tions. We assume that E > U0 and E > UN+1 − Vbias. The latter two assumptions
are made to ensure that the time-independent Schrödinger equation (2.8) admits ex-
ponential solutions of the form (2.9) and (2.10) on the intervals −∞ < x < x0 and
xN < x <∞, respectively, as opposed to polynomial (i.e., linear) solutions. For ease
of exposition and clarity, we exclusively treat the exponential case here. However, our
general approach may be readily modified to handle the polynomial case as well.

Combining (2.7), (2.9), and (2.10), it is clear that for −∞ < x < x0 and xN <
x <∞, the time-dependent wave function Ψ (x, t) = ψ (x)ϕ (t) is of the form

(2.11) Ψ (x, t) = A0e
ik0(x−E

�
t) +B0e

−ik0(x+E
�
t)
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and

(2.12) Ψ (x, t) = AN+1e
ikN+1(x−xN−E

�
t) +BN+1e

−ikN+1(x−xN+E
�
t),

respectively. In this way, the wave function can be viewed as the sum of left and
right propagating wave amplitudes. Moreover, as a result of the significant likelihood
of reflection at interfaces across which there is a significant change in the electron’s
velocity, it is clear that the second term in (2.11) and the first term in (2.12) repre-
sent the cumulative sum of the interference effects that result from, respectively, the
reflected and the transmitted amplitude at each change in the spatial potential V (x )
of the device.

With the time-dependent wave function on the intervals −∞ < x < x0 and
xN < x < ∞ written in the form of (2.11) and (2.12) it is now straightforward to
identify the relevant boundary conditions and to obtain an explicit expression for the
transmission coefficient T given in (2.6). Indeed, it is immediately clear that |A0|
is the amplitude of the electron wave function impinging on the left boundary of
the device at x = x0. Hence, for an electron incident from the left, |A0|2 = 1, and
since there is neither transmission nor reflection from x = +∞ we require BN+1 = 0.
Furthermore, from (2.4), (2.11), and (2.12), an easy calculation yields the following
expressions for the transmitted and incident current densities:

(2.13) ĵtrans =
�kN+1

m0
|AN+1|2 and ĵ inc =

�k0
m0

|A0|2 .

Combining (2.6) and (2.13), we immediately obtain

(2.14) T = T (Vbias) = T (Vbias,U) =
kn+1 |AN+1|2
k0 |A0|2

.

A typical design problem might involve determining layer potentials, Ui, with i =
1, 2, . . . , N , which yield power law–like transmission characteristics. For example, if
one desired an essentially ohmic response, one would seek layer potentials that produce
a transmission function that is linear over a specified range of bias voltages, Vmin ≤
Vbias ≤ Vmax. Other design problems of interest might involve, for example, finding
layer potentials which yield either quadratic or square root transmission characteristics
over specified intervals of bias voltages.

As an initial approach, we formulate the optimal design problem mathemati-
cally as a constrained least-squares fit to a given desired transmission function T0 =
T0 (Vbias) defined on the interval Vmin ≤ Vbias ≤ Vmax. More precisely we seek lo-

cal layer potentials U = {Ui}Ni=1, with UL ≤ Ui ≤ UH and i = 1, 2, . . . , N , which
minimize the least-squares functional

(2.15) J (U) =

ν∑
j=1

|T0 (Vj)− T (Vj ,U)|2 ,

where T = T (Vj ;U) is given by (2.14) with Vbias = Vj , and Vmin ≤ Vj ≤ Vmax,
j = 1, 2, . . . , ν, are given arbitrarily spaced bias voltages in the interval [Vmin, Vmax].

3. Solving the optimal design problem and the adjoint method. The
optimal design problem formulated as a least-squares fit to data will be solved nu-
merically by finding local minima via gradient-based steepest descent or Newton’s
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methods. To do this we require accurate and computationally efficient ways to cal-
culate T (Vbias,U) at Vbias = Vj and U, and the gradient of the performance index
J given by (2.15), ∇J (U), for a given choice of U. Following the development in
section 2, we seek solutions to the time-independent Schrödinger equation given in
(2.8) on (−∞, ∞) which are smooth (i.e., C1) across the device boundaries at x = x0
and x = xN . That is, we seek solutions ψ = ψ (x), −∞ < x < ∞, to (2.8) satisfying
the boundary conditions

ψ (x0) = ψ0 (x0) , ψ′ (x0) = ψ′
0 (x0) ,

ψ (xN ) = ψN+1 (xN ) , ψ′ (xN ) = ψ′
N+1 (xN ) ,

where the functions ψ0 and ψN+1 are given by (2.9) and (2.10), respectively. Recall-
ing that the interpretation of (2.9) and (2.10) as the sum of forward and backward
propagating waves implies that BN+1 = 0, the two conditions given above at x = x0
can be combined to eliminate the constant of integration B0, and the two condi-
tions given above at x = xN can be combined to eliminate the constant of integration
AN+1, yielding the linear second-order two-point boundary value problem on [x0, xN ]
parameterized by A0 given by

(3.1) − �
2

2m0

d2ψ (x)

dx2
+ V (x)ψ (x) = Eψ (x) , x0 < x < xN ,

(3.2) ik0ψ (x0) + ψ′ (x0) = 2ik0A0e
ik0x0 ,

(3.3) ikN+1ψ (xN )− ψ′ (xN ) = 0.

Then if ψ is the solution to (3.1)–(3.3) on the interval [x0, xN ], the desired solution on
(−∞,∞) can then be obtained by combining ψ on [x0, xN ] with ψ0 on (−∞, x0] and
ψN+1 on [xN ,∞) given by (2.9) and (2.10), respectively, with AN+1 = ψ (xN ) and
B0 = eik0x0ψ (x0) − A0e

2ik0x0 . It then follows that AN+1 = ψ (xN ) = ψ (xN ;A0) =
A0ψ (xN ; 1) is linear in A0 and, moreover, that the value of T (Vbias,U) is independent
of the value of A0. Indeed, in light of (2.14), it follows that T (Vbias) = T (Vbias,U) =
|AN+1|2kN+1

|A0|2k0 = kN+1|ψ(xN ;A0)|2
k0|A0|2 = kN+1

k0
|ψ (xN ; 1)|2 = kN+1

k0
|ψ (xN ;Vbias,U)|2 , where

ψ (·;Vbias,U) denotes the solution to the two-point boundary value problem (3.1)–

(3.3) corresponding to Vbias, A0 = 1, and U = {Ui}Ni=1. Then, recalling (2.15), solving
the optimal design problem requires the minimization of the least-squares functional

(3.4) J (U) =

ν∑
j=1

∣∣∣∣T0 (Vj)− kN+1,j

k0
|ψ (xN ;Vj ,U)|2

∣∣∣∣
2

,

where ψ (·, Vj ,U) is the solution to the two-point boundary value problem (3.1)–(3.3)

corresponding to Vbias = Vj , j = 1, 2, . . . , ν, A0 = 1, and U = {Ui}Ni=1, and we have

added the subscript j to kN+1 to reflect the fact that k2N+1 = 2m0(E−UN+1+Vbias)
�2

depends on the value of the bias voltage Vbias. That is, for j = 1, 2, . . . , ν, k2N+1,j =
2m0(E−UN+1+Vj)

�2 .
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3.1. Approximation. Actually solving the least-squares minimization problem
requires that we be able to numerically solve (3.1)–(3.3). In what follows, we propose
a numerical scheme based on an idea known as the propagation method (see, for
example, [6]) that approximates the second-order linear ordinary differential equation–
based two-point boundary value problem by a two-point boundary value problem
for a two-dimensional linear nonautonomous difference equation. Then by using the
linear relationship that exists between AN+1 and A0 together with the fact that the
transmission function is the quotient of AN+1 and A0, we are able to replace the
boundary value problem by the much more easily solved terminal value problem.
This in turn permits the highly accurate and efficient computation of the gradient of
J via the adjoint method.

Toward this end, for each M = 1, 2, . . . , we partition each of the layers [xj−1, xj ],
j = 1, 2, . . . , N , into M equal sublayers, [xM(j−1)M+m−1, x

M
(j−1)M+m], with m =

1, 2, . . . ,M , xM0 = x0, and xM(j−1)M+m = xj−1 +
mLj

M , j = 1, 2, . . . , N , and m =

1, 2, ,M . We then consider the time-independent Schrödinger equation (2.8) with
the potential function V given by (2.1) replaced by the piecewise constant approxi-
mation VM given by

(3.5) VM (x) = V
(
xM(j−1)M+m−1

)
, xM

(j−1)M+m−1
≤ x < xM

(j−1)M+m
,

j = 1, 2, . . . , N and m = 1, 2, . . . ,M . For U = {Ui}Ni=1 and Vbias given, and j =
1, 2, . . . , N and m = 1, 2, . . . ,M , we set

(3.6)
[
kM(j−1)M+m

]2
=

2m0

�2

(
E − Uj + Vbias

xM(j−1)M+m−1 − x0

L

)
,

kM0 = k0, and k
M
NM+1 = kN+1.

Then, for j = 1, 2, . . . , N and m = 1, 2, . . . ,M , on the interval [xM(j−1)M+m−1,

xM(j−1)M+m], the general solution to the time-independent Schrödinger equation with

V replaced by VM is given by

ψM(j−1)M+m (x) = AM(j−1)M+me
ikM(j−1)M+m(x−xM

(j−1)M+m−1)

+BM(j−1)M+me
−ikM(j−1)M+m(x−xM

(j−1)M+m−1),

where AM(j−1)M+m and BM(j−1)M+m in the above expressions are arbitrary constants

of integration. We also set ψM0 = ψ0 and ψMNM+1 = ψN+1, where ψ0 and ψN+1 are
given by (2.9) and (2.10), respectively. Once again, for ease of exposition, we have
assumed that E, the sum of electron kinetic and potential energy; the layer potentials,
U = {Ui}Ni=1; and bias voltages, Vbias, are such that the time-independent Schrödinger
equation (2.8) with V replaced by VM admits an exponential solution of the form
given above on each subinterval [xM(j−1)M+m−1, x

M
(j−1)M+m]. As before, our approach

is easily modified to handle the polynomial case as well.
We seek a smooth (i.e., C1) solution on [x0, xN ]. Consequently, by setting

ψM(j−1)M+m

(
xM(j−1)M+m

)
= ψM(j−1)M+m+1

(
xM(j−1)M+m

)
,

dψM(j−1)M+m

dx

(
xM(j−1)M+m

)
=
dψM(j−1)M+m+1

dx

(
xM(j−1)M+m

)
,
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ψM0
(
xM0
)
= ψM1

(
xM0
)
, dψM0

/
dx
(
xM0
)
= dψM1

/
dx
(
xM0
)
, LM(j−1)M+m = xM(j−1)M+m −

xM(j−1)M+m−1 =
Lj

M for j = 1, 2, . . . , N and m = 1, 2, . . . ,M , and LM0 = xM0 , we obtain
the system of equations given in matrix form by

(3.7)

[
eik

M
n LM

n e−ikMn LM
n

ikMn e
ikMn LM

n −ikMn e
−ikMn LM

n

] [
AMn
BMn

]
=

[
1 1

ikMn+1 −ikMn+1

] [
AMn+1

BMn+1

]
,

where n = 0, 1, 2, . . . , NM . Alternatively, inverting the 2× 2 matrix on the left-hand
side of (3.7), one obtains

[
AMn
BMn

]
=

1

2

⎡
⎣
(
1 +

kMn+1

kMn

)
e−ikMn LM

n

(
1− kMn+1

kMj

)
e−ikMn LM

n(
1− kMn+1

kMn

)
eik

M
n LM

n

(
1 +

kMn+1

kMn

)
eik

M
n LM

n

⎤
⎦[ AMn+1

BMn+1

]

≡ PM
n (U, Vbias)

[
AMn+1

BMn+1

]
,(3.8)

n = 0, 1, 2, . . . , NM . With the incident electron of amplitude |A0| being introduced
on the left and no reflective wave propagating to the left from +∞, we also have the
two boundary conditions

(3.9)
[
1 0

] [ AM0
BM0

]
= A0 and

[
0 1

] [ AMNM+1

BMNM+1

]
= 0.

The least-squares performance indices for the approximating optimal design problem
then become

JM (U) =
ν∑
j=1

∣∣∣∣∣T0 (Vj)−
∣∣AMNM+1 (Vj ,U)

∣∣2 kN+1,j∣∣AM0 ∣∣2 k0
∣∣∣∣∣
2

=

ν∑
j=1

∣∣∣∣∣T0 (Vj)−
∣∣AMNM+1 (Vj ,U)

∣∣2 kN+1,j

|A0|2 k0

∣∣∣∣∣
2

,(3.10)

where, as before, for j = 1, 2, . . . , ν, kN+1,j is defined by k2N+1,j =
2m0(E−UN+1+Vj)

�2 .

Once again we observe that AMNM+1 depends linearly on A0 and consequently on AM0
as well. It follows that the value of

TM (Vbias) = TM (Vbias,U) =
∣∣AMNM+1

∣∣2 kN+1

/∣∣AM0 ∣∣2k0
is independent of the value of A0. Moreover, it necessarily follows that AM0 depends
linearly on AMNM+1 and that the value of

TM (Vbias) = TM (Vbias,U) =
∣∣AMNM+1

∣∣2 kN+1

/∣∣AM0 ∣∣2k0
is independent of the value of AMNM+1 if it is specified instead of AM0 . It follows
that, without affecting the solution to the optimal design problem and without loss
of generality, we may set AMNM+1 = 1. The boundary conditions given in (3.9) can
then be replaced with the single terminal condition

(3.11)

[
AMNM+1

BMNM+1

]
=

[
1
0

]
,
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and the least-squares performance indices given in (3.10) can be replaced by

(3.12) JM (U) =

ν∑
j=1

∣∣∣∣∣T0 (Vj)− kN+1,j∣∣AM0 (Vj ,U)
∣∣2 k0

∣∣∣∣∣
2

.

Solving the approximating optimal design problem then consists of finding local layer
potentials U∗ = {U∗

i }Ni=1 which minimize the least-squares performance index (3.12)
subject to the system of two linear difference equations (3.8) and the terminal condi-
tion (3.11).

3.2. The adjoint method. The formulation of the optimal design problem as
the minimization of a least-squares performance index subject to a terminal value
problem for a system of linear difference equations lends itself extremely well to effi-
cient and accurate (in fact, no truncation error) gradient calculation via the adjoint
method. The adjoint method has its roots in the classical theory of constrained opti-
mization, Lagrange multipliers, and optimal control. Associated with and coupled to
the constraints on the system state variables is another, related, system of equations
known as the adjoint. In this context, the adjoint system is most familiar for the role
it plays in the formulation of necessary conditions for optimality as given in what
is generally regarded as the fundamental theorem of optimal control, the Pontryagin
maximum principle (see, for example, [7], [8]), a dynamic version of the method of
Lagrange multipliers from elementary calculus. The adjoint is typically a dynamical
system that is of a similar form to the state equation, typically an ordinary differen-
tial or difference equation (see, for example, [9] and [10]) or even a partial differential
equation (see, for example, [11]). The variables in the adjoint system are known as
the costates, dual variables, or Lagrange multipliers, and they describe the propaga-
tion of a hyperplane characterized by a normal that is related to the tangent to the
curve determined by the state trajectory [12]. At optimality, the costate variables
may be interpreted as the marginal benefit derived (with respect to the underlying
performance index being optimized) by weakening the constraints on the state vari-
ables. In fact, they are sensitivities and are related to various derivatives of the cost
functional. Economists sometimes refer to them as either imputed or shadow prices.
However, it turns out that at nonstationary points, the adjoint may also be used to
facilitate the highly efficient computation of the gradient of the performance index
with respect to the optimization parameters. In essence, it does this by making it
unnecessary to directly compute derivatives of the state variables with respect to the
optimization parameters. This computational sleight of hand is more or less unrelated
to the role played by the adjoint in optimal control theory and is actually realized
through a relatively simple combination of elementary calculus and linear duality (see
[13]). Indeed, to see how this works in its most general form, consider the compu-
tation of the gradient of the performance index J (q) = F (x (q)) subject to the in
general nonlinear system G (q,x) = 0, where the design parameters are q ∈ Rp, the
state is given by x ∈ Rn, G is an Rn-valued differentiable function on Rp ×Rn, and
F is a real-valued differentiable function on Rn. We note that, without any loss of
generality, it is entirely sufficient to consider the adjoint method only for this static
state equation G (q,x) = 0 since the case of a constraint given by a discrete-time dy-
namical system (in particular, including the one in the previous section) can readily
be put into this general form.

Using the chain rule to differentiate the performance index and the state equation
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with respect to q, we obtain the two expressions

∇J (q) = ∇F (x (q))
∂x

∂q
and

∂G (q,x)

∂x

∂x

∂q
= −∂G (q,x)

∂q
.

Now it appears that in order to evaluate∇J (q), the p linear systems given in the ex-
pression on the right will have to be solved for ∂x/∂q (for simplicity, we assume here
that the matrix ∂G (q,x) /∂x is nonsingular). However, this is in fact not the case. In-
deed, note that the expression on the right indicates that the columns of ∂x/∂q are ac-
tually the vector representations for the columns of the matrix−∂G (q,x) /∂q with re-
spect to the basis defined by the columns of ∂G (q,x) /∂x. Consequently, we consider
the linear functional on Rn given by 	 (y) = 〈∇F (x (q)) ,y〉 with ∇F (x (q)) ∈ R1×n

being its matrix representation with respect to the basis defined by the columns of
∂G (q,x) /∂x. Then, if instead we determine zT ∈ R1×n as its matrix representation
with respect to the standard basis on Rn via the equations

zi = 	 (ei) = 〈∇F (x (q)) , ei〉 = ∇F (x (q)) (∂G (q,x) /∂x)−1 ei,

with i = 1, 2, . . . , n and where ei denotes the ith standard basis element, or, equiva-
lently, by solving the single linear system known as the adjoint, costate, or dual system
given by (∂G (q,x) /∂x)T z = ∇F (x (q))T for z, then the gradient of J , ∇J (q), can
then be evaluated via

∇J (q) = ∇F (x (q))
∂x

∂q
= −zT

∂G (q,x)

∂q
.

This yields a realized savings of now having to solve only two systems, the in general
nonlinear state equation for x and the linear adjoint or costate system for z, rather
than one nonlinear system and p linear systems. Even though all p systems involve
the same system matrix, when this computation is inside an optimization loop, the
savings due to the use of the adjoint can be significant. When the adjoint formulation
for computing the gradient is applied in the context of dynamical rather than static
constraints and when we take advantage of the resulting highly specialized structure
of the matrices involved, the savings can be even more impressive. Note also the
benefits derived from the adjoint method when compared to a more näıve finite-
difference approach which would entail the solution of p + 1 nonlinear systems and
the introduction of truncation error every time the gradient ∇J (q) is computed.

To see how the adjoint method is realized in the context of the optimal design
problem of interest to us here, we rewrite the underlying system of difference equations
(3.8) and the terminal condition (3.11) as

(3.13) αi,j = Pi,jαi+1,j and αNM+1,j =

[
1
0

]
,

where for j = 1, 2, . . . , ν and i = 0, 1, 2, . . . , NM , Pi,j = PMi (U, Vj) and αi,j =[
AMi , B

M
i

]T
=
[
AMi (U, Vj) , B

M
i (U, Vj)

]T
. The least-squares performance index

(3.12) is then given by

(3.14) JM (U) =

ν∑
j=1

∣∣∣∣∣T0 (Vj)− kN+1,j

|cα0,j |2 k0

∣∣∣∣∣
2

=

ν∑
j=1

∣∣∣∣∣T0 (Vj)− kN+1,j

ᾱT0,jQα0,jk0

∣∣∣∣∣
2

,
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where c = [1, 0] and Q = cT c = [ 1 0
0 0 ]. We define the adjoint or costate system

corresponding to (3.13) and (3.14) as the initial value problem given by

βi+1,j = PTi−1,jβi,j + δi04

[
T0 (Vj)− kN+1,j

ᾱTi,jQαi,jk0

]
Qᾱi,jkN+1,j(
ᾱTi,jQαi,j

)2
k0

and β0,j = 0, where δij denotes the Kronecker delta function. It then follows that

∇JM (U) =
∂JM

∂U
=

ν∑
j=1

2

[
T0 (Vj)− kN+1,j

ᾱT0,jQα0,jk0

]
2ReᾱT0,jQ

∂α0,j

∂U kN+1,j(
ᾱT0,jQα0,j

)2
k0

= Re

ν∑
j=1

NM∑
i=0

4δi0

[
T0 (Vj)− kN+1,j

ᾱTi,jQαi,jk0

]
ᾱTi,jQkN+1,j(
ᾱTi,jQαi,j

)2
k0

∂αi,j
∂U

= Re
ν∑
j=1

NM∑
i=0

(
βi+1,j −PTi−1,jβi,j

)T ∂αi,j
∂U

= Re

ν∑
j=1

{
NM∑
i=0

βTi+1,j

∂αi,j
∂U

−
NM∑
i=1

βTi,jPi−1,j
∂αi,j
∂U

}

= Re
ν∑
j=1

{
NM∑
i=0

βTi+1,j

(
Pi,j

∂αi+1,j

∂U
+
∂Pi,j
∂U

αi+1,j

)
−
NM∑
i=1

βTi,jPi−1,j
∂αi,j
∂U

}

= Re

ν∑
j=1

NM∑
i=0

βTi+1,j

∂Pi,j
∂U

αi+1,j ,

where, in light of the terminal condition given in (3.13), we have used the fact that
∂αNM+1,j

∂U = 0. Consequently, the gradient of JMcan be obtained with no truncation
error according to the following steps.

1. For each j = 1, 2, . . . , ν, solve the terminal value problem[
AMi
BMi

]
= PM

i (U, Vj)

[
AMi+1

BMi+1

]
,[

AMNM+1

BMNM+1

]
=

[
1
0

]
,(3.15)

i = NM, NM − 1, . . . , 2, 1, 0.

2. For each j = 1, 2, . . . , ν, solve the initial value problem

βi+1,j = PMi (U, Vj)
T
βi,j ,

β1,j = 4

[
T0 (Vj)− kN+1,j∣∣AM0 ∣∣2 k0

]
kN+1,j∣∣AM0 ∣∣4 k0

[
ĀM0
0

]
,(3.16)

i = 1, 2, . . . , NM.

3. Compute the gradient of JM as

∇JM (U) = Re
ν∑
j=1

NM∑
i=0

βTi+1,j

∂PMi (U, Vj)

∂U

[
AMi+1,j

BMi+1,j

]
.
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4. Numerical stability, differentiability, and convergence. Fundamental
to the approach outlined above are the replacement and approximation of the two-
point boundary problem given either in (3.1)–(3.3) or in (3.8), (3.9) with the initial
or, more accurately, terminal value problem given by (3.8), (3.11). The solution of the
optimal design problem via the adjoint method then requires the iterative sequential
integration of the terminal value problem given in (3.15) for the system state and the
adjoint initial value problem given in (3.16) for the system costate. As is the case when
one solves a two-point boundary value problem using a shooting method that requires
the iterative numerical integration of a sequence of discretized initial value problems,
caution must be exercised to ensure that one has not sacrificed the inherent numerical
stability (error remains bounded uniformly with respect to the level of discretization
over the course of the computation) of solving a boundary value problem for the
potential numerical instability of integrating a sequence of successively more highly
discretized initial value problems. In the first part of this section, we show that the
approximation scheme proposed above is indeed numerically stable.

The solutions to the recursions given in (3.15) and (3.16) are given by

[
AMk
BMk

]
=

[
NM∏
i=k

PMi (U, Vj)

] [
1
0

]
,

k = NM, NM − 1, . . . , 2, 1, 0,

and by

βk,j =

[
0∏

i=k−2

PMi (U, Vj)
T

]
β1,j ,

β1,j = 4

[
T0 (Vj)− kN+1,j∣∣AM0 ∣∣2 k0

]
kN+1,j∣∣AM0 ∣∣4 k0

[
ĀM0
0

]
,

i = 1, 2, . . . , NM + 1,

respectively. Numerical stability will follow if we can demonstrate the boundedness
of the matrix product

NM∏
i=0

PMi (U, Vj)

uniformly in M in some appropriate matrix norm, where the matrices PMi (U, Vj)
are given by (3.8). Our numerical stability arguments will require the following tech-
nical assumption on the device parameters guaranteeing that the time-independent
Schrödinger equation (2.8) with V replaced by VM admits exponential solutions on
each of the approximating subintervals and, moreover, that these solutions remain
bounded away from becoming polynomial on any subinterval as the discretization
level tends to infinity.

Assumption 4.1. The total energy E, the layer potentials U = {Ui}Ni=1, the
overall length of the device L, and the bias voltage Vbias are such that there exists
a constant δ > 0 for which 0 < δ ≤ ∣∣kMj ∣∣, j = 0, 1, 2, . . . , NM + 1, where the kMj ,

j = 1, 2, . . . , NM , are given by (3.6), and kM0 = k0 and kMNM+1 = kN+1.
It is not difficult to specify readily verifiable sufficient conditions needed for

Assumption 4.1 to hold. Indeed, one requires only that Uj /∈ [
E + min (0, Vbias) ,
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E + max (0, Vbias)
]
, j = 1, 2, . . . , N . In the context of the optimal design problem,

Assumption 4.1 will hold throughout the iterative solution procedure if the feasible
set of layer potentials [UL, UH ] is chosen and the respective lower and upper bounds
for the bias voltages over which the device functionality is desired, Vmin and Vmax,
are such that [UL, UH ] ∩ [E +min (0, Vmin) , E +max (0, Vmax)] = ∅. With this con-
dition, it is now straightforward to specify any number of devices and optimal design
problems for which Assumption 4.1 is satisfied.

On the other hand, if the optimal design problem of interest is such that this
condition cannot be met, then not only can we not verify Assumption 4.1 and therefore
guarantee the numerical stability of the method, but it may in fact occur that one
or more of the kMj given in (3.6) will vanish. In this latter case the time-independent

Schrödinger equation (2.8) with V replaced by VM has a polynomial solution on the
corresponding approximating subinterval, and the system of equations given in (3.7)
is no longer valid. In this case an analogous but different system of equations results,
and, at least formally, the method can be appropriately modified and implemented
in a similar fashion. However, the question of numerical stability of the method
remains open. In this case, solving the boundary value problem (3.1)–(3.3) for the
time-independent Schrödinger equation with V replaced by VM while making sure
to take advantage of the underlying structure of the problem (see (5.4)–(5.10) below)
may be a better approach. Indeed, in the next section in Theorems 4.8 and 4.9 we
establish convergence. However, it is worth noting that in the examples we treat in
section 5 below, the sufficient condition given above that is required to establish that
Assumption 4.1 is satisfied is in fact not met. Nevertheless, in all of our numerical
studies we did not observe any evidence or indication of numerical instability.

Lemma 4.1. For j �= 0, M, 2M, 3M, . . . , NM , there exists a positive constant
ρ which depends on E, U= {Ui}Ni=1, and Vbias for Vmin ≤ Vbias ≤ Vmax, but which is

independent of j and M such that
∥∥PM

j (U, Vbias)
∥∥ ≤ eρ

L
M

(
1+ 2m0‖Vbias‖

�2δ2M

) 1
2 , where the

constant δ > 0 is as defined in Assumption 4.1 and where for a complex matrix A,
the matrix norm ‖A‖ is the spectral norm given by ‖A‖ =

√
λmax (A

∗A).
Proof. We begin by writing

PMj (U, Vbias) =
1

2

⎡
⎢⎢⎢⎣
(
1 +

kMj+1

kMj

)
e−ikMj LM

j

(
1− kMj+1

kMj

)
e−ikMj LM

j

(
1− kMj+1

kMj

)
eik

M
j LM

j

(
1 +

kMj+1

kMj

)
eik

M
j LM

j

⎤
⎥⎥⎥⎦

=

[
e−ikMj LM

j 0

0 eik
M
j LM

j

]⎡⎢⎢⎢⎣
1
2

(
1 +

kMj+1

kMj

)
1
2

(
1− kMj+1

kMj

)

1
2

(
1− kMj+1

kMj

)
1
2

(
1 +

kMj+1

kMj

)
⎤
⎥⎥⎥⎦

=

[
e−ikMj LM

j 0

0 eik
M
j LM

j

]⎡
⎣ 1+γM

j

2

1−γM
j

2

1−γM
j

2

1+γM
j

2

⎤
⎦ ≡ EMj ΓMj ,

where γMj = kMj+1/k
M
j . It follows that

∥∥PMj (U, Vbias)
∥∥ ≤ ∥∥EMj ∥∥∥∥ΓMj ∥∥. A straight-

forward computation immediately reveals that

(4.1)
∥∥∥EMj ∥∥∥ ≤ eL

M
j |Im kMj | ≤ eρ

L
M ,
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where ρ =
√

2m0

�2

∣∣E − ‖U‖∞ − |Vbias|
∣∣.

We turn our attention next to estimating
∥∥ΓMj ∥∥, the spectral norm of the matrix

ΓMj . Once again, an easy computation yields the characteristic equation

det
((

ΓMj

)∗
ΓMj − λI

)
=

(
1 +

∣∣γMj ∣∣2
2

− λ

)2

−
(
1− ∣∣γMj ∣∣2

2

)2

= 0

from which we find the two eigenvalues of
(
ΓMj

)∗
ΓMj to be λM+ = 1 and λM− =

∣∣γMj ∣∣2.
It follows that

∥∥∥ΓMj ∥∥∥ = max

{
1,

∣∣∣∣∣k
M
j+1

kMj

∣∣∣∣∣
}
.

Now, for j �= 0, M, 2M, 3M, . . . , NM , from the definition of kMj we have that

[
kMj+1

]2
=
[
kMj
]2

+
2m0VbiasL

M
j

�2L
,

from which it follows that ∣∣∣∣∣k
M
j+1

kMj

∣∣∣∣∣ ≤
(
1 +

2m0 |Vbias|
�2δ2M

) 1
2

and therefore that

(4.2)
∥∥∥ΓMj ∥∥∥ ≤

(
1 +

2m0 |Vbias|
�2δ2M

) 1
2

.

The result then immediately follows from (4.1) and (4.2).
Lemma 4.2. For j = 0, M, 2M, 3M, . . . , NM , there exist positive constants ρ

and σ which depend on E, U = {Ui}Ni=1, and Vbias for Vmin ≤ Vbias ≤ Vmax, but which
are independent of j and M such that the bounds∥∥∥PM

j (U, Vbias)
∥∥∥ ≤ exp (ρL/M)

√
1 +

(
2m0

/
�2σ2

) {2 ‖U‖∞ + |Vbias|},

j �= 0, and∥∥∥PM
0 (U, Vbias)

∥∥∥ ≤ exp (ρx0)
√
1 +

(
2m0

/
�2σ2

) {2 ‖U‖∞ + |Vbias|}

obtain, where for a complex matrix A, the matrix norm ‖A‖ is the spectral norm
given by ‖A‖ =

√
λmax (A

∗A).
Proof. For j = nM , n = 1, 2, . . . , N , once again from the definition of kMj we

now have

[
kMj+1

]2
=
[
kMj
]2

+
2m0

�2

{
Un − Un+1 + Vbias

(
xMnM − xMnM−1

L

)}

=
[
kMj
]2

+
2m0

�2

{
Un − Un+1 +

VbiasL
M
nM

L

}
.
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In this case it follows from Assumption 4.1 that∣∣∣∣∣k
M
j+1

kMj

∣∣∣∣∣ ≤
(
1 +

2m0

�2δ2

{
2 ‖U‖∞ +

|Vbias|
M

}) 1
2

and therefore that

∥∥∥ΓMnM∥∥∥ ≤
(
1 +

2m0

�2δ2
{2 ‖U‖∞ + |Vbias|}

) 1
2

, n = 1, 2, . . . , N.

Finally, for j = 0 we obtain∣∣∣∣kM1k0
∣∣∣∣ ≤

(
1 +

2m0

�2k20
{2 ‖U‖∞}

) 1
2

and
∥∥∥ΓM0 ∥∥∥ ≤

(
1 +

2m0

�2k20
{2 ‖U‖∞}

) 1
2

.

It remains true that
∥∥EMj ∥∥ ≤ eL

M
j |ImkMj | ≤ eρ

L
M , j = M, 2M, 3M, . . . , NM, and∥∥EM0 ∥∥ ≤ ex0|Imk0| ≤ eρx0 , and consequently the desired result follows at once.

Theorem 4.3. The linear discrete dynamical systems given in (3.15) and (3.16)
are numerically stable with respect to the approximation index M.

Proof. Lemmas 4.1 and 4.2 yield∥∥∥∥∥
NM∏
i=0

PMi (U, Vj)

∥∥∥∥∥ ≤
NM∏
i=0

∥∥PMi (U, Vj)
∥∥

=
N∏
i=0

∥∥PMiM (U, Vj)
∥∥ · NM−1∏

i=1,i�=nM,
n=1,...,N−1

∥∥PMi (U, Vj)
∥∥

≤ eρx0

(
1 +

2m0

�2σ2
{2 ‖U‖∞ + |Vbias|}

) 1
2

×
{

N∏
i=1

e
ρL
M

(
1 +

2m0

�2σ2
{2 ‖U‖∞ + |Vbias|}

) 1
2

}

×

⎧⎪⎪⎨
⎪⎪⎩

NM−1∏
i=1,i�=nM,

n=1,2,...,N−1

e
ρL
M

(
1 +

2m0 |Vbias|
�2δ2M

) 1
2

⎫⎪⎪⎬
⎪⎪⎭

≤
(
1 +

2m0

�2σ2
{2 ‖U‖∞ + |Vbias|}

)N+1
2

eρ(x0+NL)+
Nm0|Vbias|

�2δ2 ,

and the result follows.
Implicit in our use of the gradient method to solve the approximating optimal

design problems was the assumption that the least-squares performance measures
JM given in (3.10) are differentiable with respect to the design parameters U =

{Ui}Ni=1 ∈ RN . It is in fact possible to show that the cost functionals J given by

(3.4) and JM given by (3.10) are differentiable with respect to U = {Ui}Ni=1 ∈ RN

and, moreover, that limM→∞ ∇JM(UM
)
= ∇J (U), whenever UM ,U ∈ RN with

limM→∞ UM = U. It is further possible to establish subsequential convergence of
solutions to the approximating finite dimensional optimal design problems defined in
section 3 to a solution to the original infinite dimensional optimal design problem.
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Toward this end, we reformulate the boundary value problem (3.1)–(3.3) as an
abstract elliptic system in weak or variational form. Let H denote the Hilbert space
L2 (x0, xN ) and letW = H1 (x0, xN ), each endowed with its standard inner product.
It follows that W is densely and continuously embedded in H (see, for example, [14]),
and then pivoting (see [15], [16], and [17]) on H we obtain the well-known dense and
continuous embeddings W ⊂ H ⊂ W ∗, where W * denotes the space of continuous
conjugate linear functionals on W . Let Ω be a compact (i.e., closed and bounded)
subset of RN , let |·|H , ‖·‖W , and ‖·‖W∗ denote the usual norms on H, W, and W*,
respectively, and let κ denote the continuous embedding constant between H and W,
that is, |ϕ|H ≤ κ ‖ϕ‖W for ϕ ∈ W.

For each U = {Ui}Ni=1 ∈ Ω, A0 ∈ C, and Vbias, with Vmin ≤ Vbias ≤ Vmax, we
define the sesquilinear form a (U, Vbias; ·, ·) :W ×W → C and the bounded conjugate
linear functional f ∈ W ∗ by

a (U, Vbias;ϕ, χ) =

∫ xN

x0

Dϕ (x)Dχ̄ (x) dx− ikN+1ϕ (xN ) χ̄ (xN )− ik0ϕ (x0) χ̄ (x0)

+
2m0

�2

∫ xN

x0

{V (x)− E}ϕ (x) χ̄ (x) dx,(4.3)

for ϕ, χ ∈ W, and by 〈f, χ〉 = −2ik0A0e
ik0x0χ̄ (x0), for χ ∈ W, respectively, where

D denotes the differentiation operator with respect to the variable x. The boundary
value problem (3.1)–(3.3) is then given in abstract form as finding a ψ ∈ W that
satisfies

(4.4) a (U, Vbias;ψ, ϕ) = 〈f, ϕ〉

for every ϕ ∈W.

Straightforward calculations (see, for example, [15]) can be used to establish the
following lemma.

Lemma 4.4. For U = {Ui}Ni=1 ∈ Ω and Vbias with Vmin ≤ Vbias ≤ Vmax, there
exist constants λ ∈ R and α, β > 0 which are independent of U and Vbias such that

(4.5) |a (U, Vbias;ϕ, χ)| ≤ α ‖ϕ‖W ‖χ‖W
for ϕ, χ ∈W, and

(4.6) Re a (U, Vbias;ϕ, ϕ) + λ |ϕ|2H ≥ β ‖ϕ‖2W
for every ϕ ∈W.

Also, there exists a constant γ > 0 which is independent of Vbias such that for

every U1 =
{
U1
i

}N
i=1

,U2 =
{
U2
i

}N
i=1

∈ Ω we have

(4.7) |a (U1, Vbias;ϕ, χ)− a (U2, Vbias;ϕ, χ)| ≤ γ ‖U1 −U2‖∞ |ϕ|H |χ|H
for ϕ, χ ∈W.

In a similar manner, the sequence of approximating discrete two-point boundary
value problems given by (3.8) and (3.9) can be reformulated as a sequence of abstract
elliptic systems of the form given in (4.4). Indeed, this is achieved by simply replacing
the potential function V in (4.3) by the piecewise constant approximation VM given
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by (3.5). Toward this end, for each M = 1, 2, . . . , we define the sequence of abstract
sesquilinear forms {aM (U, Vbias; ·, ·)}∞M=1 on W, aM (U, Vbias; ·, ·) : W ×W → C by

aM (U, Vbias;ϕ, χ) =

∫ xN

x0

Dϕ (x)Dχ̄ (x) dx− ikN+1ϕ (xN ) χ̄ (xN )− ik0ϕ (x0) χ̄ (x0)

+
2m0

�2

∫ xN

x0

{
VM (x)− E

}
ϕ (x) χ̄ (x) dx, ϕ, χ ∈W,(4.8)

where the difference between the form defined in (4.3) and the forms defined in (4.8) is
that the potential function V given by (2.1) in the form a (U, Vbias; ·, ·) :W ×W → C
has been replaced by its piecewise constant approximation VM given in (3.5) by

VM (x) = V
(
xM(j−1)M+m−1

)
, xM

(j−1)M+m−1
≤ x < xM

(j−1)M+m
,

where j = 1, 2, . . . , N and m = 1, 2, . . . ,M . Once again, it is not difficult to show
that the forms aM (U, Vbias; ·, ·) :W ×W → C satisfy the inequalities (4.5)–(4.7) with
the same constants λ ∈ R and α, β > 0 which work for the form a (U, Vbias; ·, ·) :
W ×W → C given by (4.3).

We consider the sequence of abstract elliptic boundary value problems given by

(4.9) aM
(
U, Vbias;ψ

M , ϕ
)
= 〈f, ϕ〉

for every ϕ ∈W.
Under appropriate conditions, a routine application of the Lax–Milgram theorem

(see, for example, [15], [16], or [18]) yields the existence of unique solutions to the
abstract boundary value problems (4.4) and (4.9). More directly, we have the following
well posedness result.

Theorem 4.5. If the constant λ ∈ R and β > 0 guaranteed to exist by Lemma
4.4 are such that λ < β

κ2 , then the abstract elliptic boundary value problem given
in (4.4) and the sequence of abstract elliptic boundary value problems given in (4.9)
admit unique solutions ψ ∈W and ψM ∈W , M = 1, 2, . . . .

Proof. The bound given in (4.5) is sufficient to conclude that the forms a and
aM given in (4.3) and (4.8) define bounded linear operators A,AM ∈ L (W,W ∗).
Moreover, the coercivity estimate given in (4.6) with λ < β

κ2 readily yields the lower

bounds ‖Aϕ‖W∗ ≥ β̂ ‖ϕ‖W and ‖AMϕ‖W∗ ≥ β̂ ‖ϕ‖W with β̂ = β − λκ2 > 0. It
follows that the mappings A and AM are injective, and the Riesz representation
theorem together with the dense embeddings W ⊂ H ⊂ W ∗ is sufficient to conclude
that the mappings are surjective as well. Consequently they each admit bounded
inverses A−1 and A−1

M with the unique solutions to the boundary value problems
(4.4) and (4.9) then given by ψ = A−1f and ψM = A−1

M f , respectively. We also have
the continuous dependence results ‖ψ‖W ≤ 1

β̂
‖f‖W∗ and ‖ψM‖W ≤ 1

β̂
‖f‖W∗ .

We note that it is immediately clear that a sufficient condition for λ ≤ 0 < β
κ2

would be that the design space Ω, Vmin, Vmax and the total energy E are such that
there exists a constant μ > 0 such that 2m0

�2

{
VM (x)− E

} ≥ μ for x0 ≤ x ≤ xN .
Recalling the approximation framework developed in section 3, it follows that the

functions ψM ∈W given by

ψM (x) = ψM (x;Vbias,U) = ψM(j−1)M+m (x)

= AM(j−1)M+me
ikM(j−1)M+m(x−xM

(j−1)M+m−1)

+BM(j−1)M+me
−ikM(j−1)M+m(x−xM

(j−1)M+m−1)
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for x ∈ [xM(j−1)M+m−1, x
M
(j−1)M+m

]
with coefficients

{
AM(j−1)M+m

}
and

{
BM(j−1)M+m

}
,

for j = 1, 2, . . . , N and m = 1, 2, . . . ,M , determined via the propagation matrix
method described in section 3.1 for solving the discrete two-point boundary value
problem (3.8), (3.9) above are in fact the unique solutions to the abstract elliptic
boundary value problems (4.9) that are guaranteed to exist by Theorem 4.5. More-
over, from (3.7), (3.8), and (3.9) it follows that

ψM (xN ;Vbias,U) = ψMNM
(
xMNM

)
= AMNMe

ikMNM
LN
M +BMNMe

−ikMNM
LN
M

= AMNM+1 +BMNM+1 = AMNM+1.

Consequently, from (3.10), we find that

JM (U) =

ν∑
j=1

∣∣∣∣∣T0 (Vj)−
∣∣AMNM+1 (Vj ,U)

∣∣2 kN+1,j

|A0|2 k0

∣∣∣∣∣
2

=

ν∑
j=1

∣∣∣∣∣T0 (Vj)− kN+1,j

|A0|2 k0
∣∣ψM (xN ;Vj ,U)

∣∣2∣∣∣∣∣
2

=

ν∑
j=1

∣∣∣∣T0 (Vj)− kN+1,j

k0

∣∣ψM (xN ;Vj ,U)
∣∣2∣∣∣∣

2

,(4.10)

the last expression resulting when A0 has been arbitrarily set to one.
Theorem 4.6. If λ < β

κ2 , then for each M = 1, 2, . . . , the approximating optimal
design problems involving the minimization of the performance indices JM given in
(3.10) (or, equivalently, in (4.10)) over the compact set Ω subject to the boundary value

problem given by (3.8), (3.9) (or, equivalently, by (4.9)) have a solution ÛM ∈ Ω.
Proof. The result will follow immediately if, for each M = 1, 2, . . . , we can

demonstrate the continuous dependence of ψM (xN ;Vj ,U) on U ∈ Ω. Since W =
H1 (x0, xN ), the Sobolev embedding theorem (see, for example, [7] or [8]) implies
that it is sufficient to demonstrate the continuous dependence of ψM (·;Vj ,U) ∈ W
on U ∈ Ω with respect to the W -norm. But this result follows immediately from
the bounds given in Lemma 4.4. Indeed, for M fixed and U,U0 ∈ Ω, we let ψM =
ψM (·;Vj ,U) ∈ W and ψM0 = ψM (·;Vj ,U0) ∈ W denote, respectively, the unique
solutions to the abstract elliptic boundary value problem given in (4.9) corresponding
to U ∈ Ω and U0 ∈ Ω. Then (4.6), (4.7), and (4.9) yield

β
∥∥ψM0 − ψM

∥∥2
W

≤ Re aM
(
U, Vbias;ψ

M
0 − ψM , ψM0 − ψM

)
+ λ

∣∣ψM0 − ψM
∣∣2
H

= Re
{
aM

(
U, Vbias;ψ

M
0 , ψM0 − ψM

)− aM
(
U, Vbias;ψ

M , ψM0 − ψM
)}

+ λ
∣∣ψM0 − ψM

∣∣2
H

= Re
{
aM

(
U, Vbias;ψ

M
0 , ψM0 − ψM

)− 〈f, ψM0 − ψM
〉}

+ λ
∣∣ψM0 − ψM

∣∣2
H

= Re
{
aM

(
U, Vbias;ψ

M
0 , ψM0 − ψM

)− aM
(
U0, Vbias;ψ

M
0 , ψM0 − ψM

)}
+ λ

∣∣ψM0 − ψM
∣∣2
H

≤ ∣∣aM (
U, Vbias;ψ

M
0 , ψM0 − ψM

)− aM
(
U0, Vbias;ψ

M
0 , ψM0 − ψM

)∣∣+ λ
∣∣ψ0 − ψM

∣∣2
H

≤ γ ‖U−U0‖∞
∣∣ψM0 ∣∣H ∣∣ψM0 − ψM

∣∣
H
+ λ

∣∣ψM0 − ψM
∣∣2

≤ γκ ‖U−U0‖∞
∣∣ψM0 ∣∣H ∥∥ψM0 − ψM

∥∥
W

+ λκ2
∥∥ψM0 − ψM

∥∥2
W
.
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It then follows that(
β − λκ2

) ∥∥ψM0 − ψM
∥∥2
W

≤ γκ ‖U−U0‖∞
∣∣ψM0 ∣∣H ∥∥ψM0 − ψM

∥∥
W

and therefore that ∥∥ψM0 − ψM
∥∥
W

≤ γκ

β̂

∣∣ψM0 ∣∣H ‖U0 −U‖∞ ,

where β̂ = β − λκ2 > 0, and the result follows.
Next we establish the existence of the gradients ∇JM and ∇J of the least-squares

performance indices JM given in (3.10) and J given in (3.4).
Theorem 4.7. If λ < β

κ2 , then the approximating optimal design performance
indices JM , for each M = 1, 2, . . . , given in (3.10) (or, equivalently, (4.10)) and the

performance index J given in (3.4) are differentiable with respect to U = {Ui}Ni=1 ∈
int (Ω).

Proof. We demonstrate the differentiability of J . Establishing the differentia-
bility of JM is completely analogous. Also, it is immediately clear that in order to
establish that J is differentiable, it suffices to show that the unique solution ψ ∈ W
to the abstract boundary value problem (4.4) guaranteed to exist by Theorem 4.5 is

differentiable with respect to U = {Ui}Ni=1 ∈ int (Ω).
Let ψ0 ∈W denote the unique solution to (4.4), and, for h > 0 sufficiently small,

let ψj ∈W be the unique solution to the abstract boundary value problem

a (U+ hej , Vbias;ψj , ϕ) = 〈f, ϕ〉 for every ϕ ∈ W,

where ej ∈ RN , j = 1, 2, . . . , N , denote the standard basis elements in RN . In
addition, for j = 1, 2, . . . , N and ψ ∈W, let 	ψ,j ∈ W ∗ be given by

	ψ,j (ϕ) = −2m0

�2

∫ xN

x0

χ[xj−1,xj] (x)ψ (x) ϕ̄ (x) dx for every ϕ ∈W,

where χI denotes the characteristic function of the interval I ⊆ R, and let ψ′
j ∈ W

be the unique solution to the abstract boundary value problem

(4.11) a
(
U, Vbias;ψ

′
j , ϕ

)
= 	ψ0,j (ϕ)

for every ϕ ∈ W , also guaranteed to exist by Theorem 4.5. Then, setting ψj,h =

ψ′
j − ψj−ψ0

h , for j = 1, 2, . . . , N , the W −H coercivity inequality (4.6) yields

β ‖ψj,h‖2W ≤ Re a (U, Vbias;ψj,h, ψj,h) + λ |ψj,h|2H .

Once again, setting β̂ = β − λκ2 > 0, it follows that

β̂ ‖ψj,h‖2W ≤ Re a (U, Vbias;ψj,h, ψj,h)

= Re

{
	ψ0,j (ψj,h) +

1

h
a (U, Vbias;ψ0, ψj,h)− 1

h
a (U, Vbias;ψj , ψj,h)

}

= Re

{
	ψ0,j (ψj,h) +

1

h
a (U+ hej , Vbias;ψj , ψj,h)− 1

h
a (U, Vbias;ψj , ψj,h)

}
= Re

{
	ψ0,j (ψj,h)− 	ψj ,j (ψj,h)

}
.
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It follows that

‖ψj,h‖W ≤ 2m0κ
2

β̂�2
‖ψj − ψ0‖W .

A similar straightforward calculation yields

β̂ ‖ψj − ψ0‖2W ≤ Re a (U+ hej , Vbias;ψj − ψ0, ψj − ψ0)

= Re

{
−2m0h

�2

∫ xN

x0

χ[xj−1,xj ]ψ0

(
ψ̄j − ψ̄0

)
dx

}

=
2m0κ

2h

�2
‖ψ0‖W ‖ψj − ψ0‖W ,

and, consequently, that

‖ψj − ψ0‖W ≤ 2m0κ
2

β̂�2
‖ψ0‖W h.

Combining our two estimates, we obtain∥∥∥∥ψ′
j −

ψj − ψ0

h

∥∥∥∥
W

≤ 4m2
0κ

4

β̂�4
‖ψ0‖W h

from which the desired result immediately follows with ∇Uψ0 = [ψ′
1, ψ

′
2, . . . , ψ

′
N ] ∈

×Nj=1W .
We conclude this section with the following two convergence results. The first is

concerned with the subsequential convergence of the solutions of the approximating
optimal design problems ÛM ∈ Ω to a solution Û ∈ Ω of the original optimal design
problem. The second involves the convergence of the gradients of the approximating
cost functionals ∇JM to the gradient of the original cost functional ∇J .

Theorem 4.8. Let λ < β
κ2 , and, for each M = 1, 2, . . . , let ÛM ∈ Ω be

the solution to the Mth approximating optimal design problem. Then the sequence{
ÛM

}∞
M=1

⊂ Ω admits a convergent subsequence
{
ÛMk

}∞
k=1

⊂ {
ÛM

}∞
M=1

⊂ Ω with

limk→∞ ÛMk = Û ∈ Ω. Moreover, Û ∈ Ω is a solution to the optimal design problem
given by (3.1)–(3.4) in the sense that J

(
Û
)
= minU∈Ω J (U).

Proof. The existence of the convergent subsequence
{
Û
Mk}∞

k=1
⊂ {

Û
M}∞

M=1
⊂ Ω

with limk→∞ Û
Mk

= Û ∈ Ω follows immediately from the assumption that Ω is a
closed and bounded (and therefore compact) subset of RN . Now let

{
UM

}∞
M=1

⊂
Ω be any convergent sequence in Ω with limM→∞ UM = U0 ∈ Ω, and, for each
M = 1, 2, . . . , let ψM denote the unique solution to the abstract elliptic boundary
value problem given in (4.9) with U = UM and let ψ0 denote the unique solution to
the abstract elliptic boundary value problem given in (4.4) with U = U0. Then, the
bounds given in Lemma 4.4 imply

β
∥∥ψ0 − ψM

∥∥2
W

≤ Re aM

(
UM , Vbias;ψ0 − ψM , ψ0 − ψM

)
+ λ

∣∣ψ0 − ψM
∣∣2
H

= Re
{
aM

(
UM , Vbias;ψ0, ψ0 − ψM

)
− aM

(
UM , Vbias;ψ

M , ψ0 − ψM
)}

+λ
∣∣ψ0 − ψM

∣∣2
H
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= Re
{
aM

(
UM , Vbias;ψ0, ψ0 − ψM

)
− 〈f, ψ0 − ψM

〉}
+ λ

∣∣ψ0 − ψM
∣∣2
H

= Re
{
aM

(
UM , Vbias;ψ0, ψ0 − ψM

)
− a

(
U0, Vbias;ψ0, ψ0 − ψM

)}
+ λ

∣∣ψ0 − ψM
∣∣2
H

= Re
{
aM

(
UM , Vbias;ψ0, ψ0 − ψM

)
− aM

(
U0, Vbias;ψ0, ψ0 − ψM

)}
+Re

{
aM

(
U0, Vbias;ψ0, ψ0 − ψM

)− a
(
U0, Vbias;ψ0, ψ0 − ψM

)}
+ λ

∣∣ψ0 − ψM
∣∣2
H

≤ γκ
∥∥∥UM −U0

∥∥∥
∞

|ψ0|H
∥∥ψ0 − ψM

∥∥
W

+
2m0

�2

∫ xN

x0

{
VM (x) − V (x)

}
ψ0 (x)

(
ψ̄0 (x)− ψ̄M (x)

)
dx+ λκ2

∥∥ψ0 − ψM
∥∥2
W

≤ γκ
∥∥∥UM −U0

∥∥∥
∞

|ψ0|H
∥∥ψ0 − ψM

∥∥
W

+
2m0 |Vbias|

�2

N∑
j=1

∫ xj

xj−1

Lj
ML

|ψ0 (x)|
∣∣ψ̄0 (x)− ψ̄M (x)

∣∣ dx+ λκ2
∥∥ψ0 − ψM

∥∥2
W

≤ γκ
∥∥∥UM −U0

∥∥∥
∞

|ψ0|H
∥∥ψ0 − ψM

∥∥
W

+
2m0κ |Vbias|

�2M
|ψ0|H

∥∥ψ0 − ψM
∥∥
W

+λκ2
∥∥ψ0 − ψM

∥∥2
W
.

It then follows that(
β − λκ2

) ∥∥ψ0 − ψM
∥∥2
W

≤ γκ
∥∥∥UM −U0

∥∥∥
∞

|ψ0|H
∥∥ψ0 − ψM

∥∥
W

+
2m0κ |Vbias|

�2M
|ψ0|H

∥∥ψ0 − ψM
∥∥
W

and therefore that

(4.12)
∥∥ψ0 − ψM

∥∥
W

≤ γκ

β̂

∥∥∥UM −U0

∥∥∥
∞

|ψ0|H +
2m0κ |Vbias|
β̂�2M

|ψ0|H ,

where once again β̂ = β − λκ2 > 0. Consequently, we have

lim
M→∞

ψM
(
·;Vbias,UM

)
= ψ0 (·;Vbias,U0)

in W and, once again by the Sobolev embedding theorem [14], in C [x0, xN ] as well.
Finally, for any U ∈ Ω we find that

J
(
Û
)
= J

(
lim
k→∞

Û
Mk

)
= lim

k→∞
JMk

(
Û
Mk
)
≤ lim
k→∞

JMk (U) = J (U) ,

and the desired result has been established.
Theorem 4.9. Let λ < β

κ2 , and, for each M = 1, 2, . . . , let UM ∈ Ω with
limk→∞ UM = U0 ∈ Ω. Then ∇J (U0) = limM→∞ ∇JM(UM

)
.

Proof. For each M = 1, 2, . . . let ψM ∈ W denote the unique solution to the
abstract boundary value problem given in (4.9) with U = UM , and let ψ0 ∈ W de-
note the unique solution to the abstract boundary value problem given in (4.4) with
U = U0. Then from Theorem 4.7 we know that, for each j = 1, 2, . . . , N , there exists
ψ′
j ∈ W with ∇Uψ0 = [ψ′

1, ψ
′
2, . . . , ψ

′
N ] ∈ ×Nj=1W and that, for each M = 1, 2, . . . and

each j = 1, 2, . . . , N , there exists ψ′M
j ∈W such that∇Uψ

M = [ψ′M
1 , ψ

′M
2 , . . . , ψ

′M
N ] ∈
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×Nj=1W . We show that, for each j = 1, 2, . . . , N , limM→∞ ψ′M
j = ψ′

j in W , and hence

that limM→∞ ∇Uψ
M = ∇Uψ0 in ×Nj=1W . Then the desired result will immediately

follow from the Sobolev embedding theorem [14]. For each j = 1, 2, . . . , N , the co-
ercivity inequality (4.6), the fact that λ < β

κ2 , the definition (4.11), and estimates
similar to those in the proof of Theorem 4.8 yield

β̂
∥∥∥ψ′

j − ψ′M
j

∥∥∥2
W

≤ Re
{
aM

(
UM , Vbias;ψ

′
j − ψ′M

j , ψ
′
j − ψ′M

j

)}
= Re

{
aM

(
UM , Vbias;ψ

′
j , ψ

′
j − ψ′M

j

)
− aM

(
U0, Vbias;ψ

′
j , ψ

′
j − ψ′M

j

)
+ aM

(
U0, Vbias;ψ

′
j , ψ

′
j − ψ′M

j

)
− a

(
U0, Vbias;ψ

′
j , ψ

′
j − ψ′M

j

)
= a

(
UM , Vbias;ψ

′
j , ψ

′
j − ψ′M

j

)
+ a

(
U0, Vbias;ψ

′
j , ψ

′
j − ψ′M

j

)
− aM

(
UM , Vbias;ψ

′M
j , ψ

′
j − ψ′M

j

)}

≤ γκ2
∥∥∥UM −U0

∥∥∥
∞

∥∥ψ′
j

∥∥
W

∥∥∥ψ′
j − ψ′M

j

∥∥∥
W

+
2m0

�2

∫ xN

x0

∣∣VM (x)− V (x)
∣∣ ∣∣ψ′

j (x)
∣∣ ∣∣∣ψ′

j (x)− ψ′M
j (x)

∣∣∣ dx
+
∣∣∣	ψM

0 ,j

(
ψ′
j − ψ′M

j

)
− 	ψ0,j

(
ψ′
j − ψ′M

j

)∣∣∣
≤ γκ2

∥∥∥UM − U0

∥∥∥
∞

∥∥ψ′
j

∥∥
W

∥∥∥ψ′
j − ψ′M

j

∥∥∥
W

+
2m0κ

2 |Vbias|
�2M

∥∥ψ′
j

∥∥
W

∥∥∥ψ′
j − ψ′M

j

∥∥∥
W

+
2m0κ

2

�2

∥∥ψM − ψ0

∥∥
W

∥∥∥ψ′
j − ψ′M

j

∥∥∥
W
,

where once again β̂ = β − λκ2 > 0. It then follows that∥∥∥ψ′
j − ψ′M

j

∥∥∥
W

≤ γκ2

β̂

∥∥ψ′
j

∥∥
W

∥∥∥UM −U0

∥∥∥
∞

+
2m0κ

2 |Vbias|
β̂�2M

∥∥ψ′
j

∥∥
W

+
2m0κ

2

β̂�2

∥∥ψM − ψ0

∥∥
W
,

and, therefore, making use of the estimate given in (4.12), that∥∥∥ψ′
j − ψ′M

j

∥∥∥
W

≤
{
γκ2

β̂

∥∥ψ′
j

∥∥
W

+
2m0κ

4

β̂2�2
‖ψ0‖W

}∥∥∥UM −U0

∥∥∥
∞

+

{
2m0κ

2 |Vbias|
β̂�2

∥∥ψ′
j

∥∥
W

+
4m2

0κ
4 |Vbias|
β̂2�4

‖ψ0‖W
}

1

M
,(4.13)

from which the desired result then immediately follows.
It is in fact also possible to characterize both the gradient of J and the gradient

of JM and the convergence of ∇JM to ∇J as M → ∞ through the use of an adjoint
and a costate variable. Indeed, for each U0 ∈ Ω, j = 1, 2, . . . , ν, a straightforward
calculation yields the adjoint and gradient formula

a (U0, Vj;ψj , ϕ) = 〈f, ϕ〉 for every ϕ ∈W,

a (U0, Vj ;ϕ, ηj) = 〈gj (ψj) , ϕ〉 for every ϕ ∈W,
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(4.14)

∇J (U)

=
2m0

�2
Re

ν∑
j=1

[∫ x1

x0

ψj (x) ηj (x)dx,

∫ x2

x1

ψj (x) ηj (x)dx, . . . ,

∫ xN

xN−1

ψj (x) ηj (x)dx

]
,

where, for ϕ, ψ ∈W , gj (ψ) ∈W ∗ is given by

〈gj (ψ) , ϕ〉 = −4kN+1,j

k0

[
T0 (Vj)− kN+1,j

k0
|ψj (xN )|2

]
ψj (xN )ϕ (xN ).

Similarly, for each j = 1, 2, . . . , ν, each M = 1, 2, . . . , and UM ∈ Ω, we have

aM

(
UM , Vj;ψ

M
j , ϕ

)
= 〈f, ϕ〉 for every ϕ ∈W,

aM

(
UM , Vj ;ϕ, ηMj

)
=
〈
gj
(
ψMj

)
, ϕ
〉

for every ϕ ∈W,

(4.15)

∇JM (U)

=
2m0

�2
Re

ν∑
j=1

[∫ x1

x0

ψMj (x) ηMj (x)dx,

∫ x2

x1

ψMj (x) ηMj (x)dx, . . . ,

∫ xN

xN−1

ψMj (x) ηMj (x)dx

]
.

Then if λ < β
κ2 and limM→∞ UM = U0 ∈ Ω, as in the proof of Theorem 4.8, for each

j = 1, 2, . . . , ν, we have limM→∞ ψMj = ψj in W , from which it is straightforward

to show limM→∞ gj
(
ψMj

)
= gj (ψ) in W

∗ or, equivalently, that limM→∞
∥∥gj (ψMj )−

gj (ψ)
∥∥
W∗ = 0. A coercivity argument analogous to those used in the proofs of

the theorems above can then be used to argue costate convergence. That is, we
have that limM→∞ ηMj = ηj in W . The convergence of the gradients given by

limM→∞ ∇JM (UM ) = ∇J (U0) ∈ RN then follows immediately from (4.14), (4.15),
the continuity of the H inner product, and the continuous embedding of W in H .

5. Numerical studies. In this section we present the results of some of our
numerical studies involving the approach discussed above. In particular, we consider
the optimal design of three different 10-layer devices in each of which all of the layers
have the same thickness of 1 nm. One device is to have a linear transmission function
T01, a second is to have a quadratic transmission function T02, and the third is to
have a square root transmission function T03. More precisely, we take

(5.1) T01 (V ) = 0.1V + 0.005,

(5.2) T02 (V ) = 0.05V 2 + 0.015V + 0.001,

and

(5.3) T03 (V ) = 0.05
√
V + 0.005.

We base our design on 26 equally spaced bias voltages from Vmin = 0 V to Vmax = 0.25
V. It follows that we set N = 10; L = 10; xi = i, i = 0, 1, 2, . . . , N ; Li = 1,
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i = 1, 2, . . . , N ; ν = 26; Vmin = 0; Vmax = 0.25; and Vj = Vmin + j Vmax−Vmin

ν ,
j = 0, 1, 2, . . . , ν.

All computations were carried out on a PC using MATLAB. The resulting approx-
imating optimization problems were solved using the MATLAB constrained optimiza-
tion routine FMINCON. The requisite gradients were computed via the adjoint-based
method described in section 3.2. An initial guess for the layer potential energies had
to be supplied. We took it to be constant across all the layers of the device at 0.5 eV.
The feasible potential energy levels were constrained to remain between UL = 0 eV
and UH = 1 eV. In our calculations we set the incident electron energy to be E = 0.026
eV and the effective electron mass m∗ = 0.07×m0, where m0 = 9.10939× 10−31 kg
is the bare electron mass. This choice of m* is appropriate for an electron in the
conduction band of AlξGa1−ξAs.

We determined optimal designs with discretization levels M = 2, 4, 8, 16, 32,
64, 128. To evaluate the performance of our scheme we simulated the performance
of the optimal designs by evaluating the least-squares performance index (3.4), using
the propagation matrix method to solve the Schrödinger equation discretized at the
level of M = 512. To attempt to observe the convergence of the optimal designs, we
computed the relative error between the optimal design for discretization levelM and
the optimal design for discretization level M = 128 in both the L2- and L∞-norms.
Finally we also recorded the number of FMINCON iterations that were required until
convergence was achieved and calculated the number of CPU seconds per iteration.
For each of the desired transmission coefficients given in (5.1)–(5.3), we tabulated
our results in Tables 5.1–5.3. In Figures 5.1–5.6 we plot the potential energy profiles
and the values of the transmission function at the bias voltage levels Vj = Vmin +
j Vmax−Vmin

ν , j = 0, 1, 2, . . . , ν, for each of the optimal designs for each of the three
desired characteristics given in equations (5.1)–(5.3). Once again, to simulate the
actual performance of the optimal designs, in calculating the transmission functions
we discretized the Schrödinger equation using the approach we have described here
at discretization level M = 512.

Table 5.1

Tabulated results for the optimal potential energy profiles for Device 1 given by (5.1) for different
discretization levels.

M JM
(
Û

M
)

J512
(
Û

M
) ∥∥Û

M−Û
128

∥∥
2∥∥Û128

∥∥
2

∥∥ÛM−Û
128

∥∥
∞∥∥Û128

∥∥
∞

Iter CPU/iter
(sec/iter)

2 1.73 × 10−8 9.96 × 10−5 0.09 0.12 204 1.40

4 1.71 × 10−8 2.22 × 10−5 0.11 0.10 32 2.62

8 1.31 × 10−8 0.51 × 10−5 0.12 0.18 41 5.47

16 1.68 × 10−8 0.12 × 10−5 0.08 0.10 46 10.72

32 1.63 × 10−8 0.03 × 10−5 0.08 0.09 63 9.50

64 1.65 × 10−8 0.01 × 10−5 0.01 0.02 63 45.97

128 1.80 × 10−8 0.00 × 10−5 0.00 0.00 59 95.82

Inspection of the tables reveals (and not surprisingly) that performance improves
with increasing level of discretization. Also, for each device, although the locally
optimal designs we find are clustered, and some degree of convergence is observed, it
is by no means monotone.

Finally, we numerically illustrate the gradient convergence result given in The-
orem 4.9. Once again with N = 10; L = 10; xi = i, i = 0, 1, 2, . . . , N ; Li = 1,
i = 1, 2, . . . , N ; ν = 26; Vmin = 0; Vmax = 0.25; Vj = Vmin + j Vmax−Vmin

ν for
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Table 5.2

Tabulated results for the optimal potential energy profiles for Device 2 given by (5.2) for different
discretization levels.

M JM
(
Û

M
)

J512
(
Û

M
) ∥∥ÛM−Û

128
∥∥
2∥∥Û128

∥∥
2

∥∥ÛM−Û
128

∥∥
∞∥∥Û128

∥∥
∞

Iter CPU/iter
(sec/iter)

2 1.06× 10−8 7.11× 10−6 0.22 0.30 26 1.67

4 1.13× 10−8 1.50× 10−6 0.12 0.13 38 3.02

8 0.56× 10−8 0.35× 10−6 0.04 0.05 24 5.92

16 1.85× 10−8 0.11× 10−6 0.15 0.17 38 10.57

32 1.20× 10−8 0.03× 10−6 0.06 0.06 34 21.85

64 0.51× 10−8 0.01× 10−6 0.09 0.10 55 44.25

128 1.03× 10−8 0.01× 10−6 0.00 0.00 107 99.24

Table 5.3

Tabulated results for the optimal potential energy profiles for Device 3 given by (5.3) for different
discretization levels.

M JM
(
Û

M
)

J512
(
Û

M
) ∥∥Û−Û

128
∥∥
2∥∥Û128

∥∥
2

∥∥Û
M−Û

128
∥∥
∞∥∥Û128

∥∥
∞

Iter CPU/iter
(sec/iter)

2 0.97× 10−5 8.85 × 10−5 0.21 0.19 61 1.59

4 0.94× 10−5 2.67 × 10−5 0.11 0.09 92 3.12

8 1.33× 10−5 1.32 × 10−5 0.09 0.10 125 5.49

16 0.92× 10−5 1.01 × 10−5 0.08 0.07 400 10.47

32 0.92× 10−5 0.94 × 10−5 0.05 0.06 96 21.81

64 0.92× 10−5 0.92 × 10−5 0.06 0.05 123 44.69

128 0.91× 10−5 0.91 × 10−5 0.00 0.00 173 95.65
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Fig. 5.1. Optimal potential energy profiles for Device 1 given by (5.1) for discretization levels
M = 2, 4, 8, 128 (left) and M = 16, 32, 64, 128 (right).

j = 0, 1, 2, . . . , ν; transmission function T0 (V ) = T02 (V ) given in (5.2) (i.e., Device 2);

and U = {Ui}Ni=1 ∈ RN randomly generated, we used the adjoint-based scheme de-

scribed in section 3 to compute∇JM (U) ∈ RN forM = 2, 4, 8, . . . , 2048. To illustrate

convergence, in Table 5.4 we tabulated
‖∇JM (U)−∇J2048(U)‖

2

‖∇J2048(U)‖2
for M = 4, 8, . . . , 1024.

The linear convergence predicted by the estimates (4.12) in the proof of Theorem 4.8
and (4.13) in the proof of Theorem 4.9 is immediately evident in the table.
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Fig. 5.2. Simulated value of transmission function at bias voltage design values using optimal
potential energy profiles for Device 1 given by (5.1) for discretization levels M = 2, 4, 8, 128 (left)
and M = 16, 32, 64, 128 (right).
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Fig. 5.3. Optimal potential energy profiles for Device 2 given by (5.2) for discretization levels
M = 2, 4, 8, 128 (left) and M = 16, 32, 64, 128 (right).
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Fig. 5.4. Simulated value of transmission function at bias voltage design values using optimal
potential energy profiles for Device 2 given by (5.2) for discretization levels M = 2, 4, 8, 128 (left)
and M = 16, 32, 64, 128 (right).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

3218 A. F. J. LEVI AND I. G. ROSEN

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Position, x (nm)

Po
te

nt
ia

l, 
U

( 
x)

 (
eV

)

 

 

 M = 128
 M = 8
 M = 4
 M = 2

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Position, x (nm)

Po
te

nt
ia

l, 
U

( 
x)

 (
eV

)

 

 

 M = 128
 M = 64
 M = 32
 M = 16

Fig. 5.5. Optimal potential energy profiles for Device 3 given by (5.3) for discretization levels
M = 2, 4, 8, 128 (left) and M = 16, 32, 64, 128 (right).

0 0.05 0.1 0.15 0.2 0.25
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Bias voltage, V
bias

 (V)

T
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt

 

 

 M = 2
 M = 4
 M = 8
 M = 128
 T

0
( V )

0 0.05 0.1 0.15 0.2 0.25
0.005

0.01

0.015

0.02

0.025

0.03

0.035

Bias voltage, V
bias

 (V)

T
ra

ns
m

is
si

on
 c

oe
ff

ic
ie

nt

 

 

 M = 16
 M = 32
 M = 64
 M = 128
 T

0
( V )

Fig. 5.6. Simulated value of transmission function at bias voltage design values using optimal
potential energy profiles for Device 3 given by (5.3) for discretization levels M = 2, 4, 8, 128 (left)
and M = 16, 32, 64, 128 (right).

Table 5.4

Tabulated results showing the linear convergence of the gradients of the approximating perfor-
mance indices predicted in the proofs of Theorems 4.8 and 4.9. The gradients were computed using
the adjoint-based scheme discussed in section 3.

M 4 8 16 32 64 128 256 512 1024

‖∇JM (U)−∇J2048(U)‖
2

‖∇J2048(U)‖
2

0.0616 0.0313 0.0157 0.0078 0.0039 0.0019 0.0009 0.0004 0.0001

One might ask how well our approach performs when compared to other schemes
for this design problem found in the literature. The only other two treatments with
which we are familiar are those detailed in [2] and [3]. In [2] the authors identify the
optimal design via an exhaustive search of a discretization of the admissible potential
set

Ω =
{
U = {Ui}Ni=1 ∈ RN : UL ≤ Ui ≤ UH, i = 1, 2, . . . , N

}
.

The level of discretization would depend on the desired degree of precision in the
optimal layer potentials. Indeed, if the desired degree of precision in each of the N
layer potentials is 10−d, then the number of times that the forward system would
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have to be solved in an exhaustive search of the admissible potential set Ω would be

approximately
(
(UH − UL) 10

d
)N

. On the other hand, the results presented in Tables
5.1–5.3 required the forward system and the adjoint system to be solved approximately
10 times per iteration. In those examples we had N = 10 potential layers, UL = 0 eV,
and UH = 1 eV, and the convergence criterion was set at 10−12. So, for example,
referring to Table 5.1 with M = 16, 41 iterations of the optimization loop were
required. Consequently, combining the effort required to solve both the forward and
the adjoint system amounted to 2 (forward and adjoint) × 10 (solutions per iteration)
× 41 (iterations) or 820 system solutions. On the other hand, an exhaustive search
of the admissible parameter space to obtain a level of precision of 10−12 would have

required approximately
(
(1− 0) 1012

)10
= 10120 system solutions.

A meaningful comparison with the approach detailed in [3] is not really possi-
ble since the authors in that treatment do not formulate the underlying problem in
the same way we did here. Indeed, they take the number of potential layers to be
optimized over, N, to be the same as the level of discretization, M. In our case, the
number of potential layers is a design criteria set a priori. When M is equal to N,
computing the requisite gradients is considerably easier than it is in our setting.

A comparison is possible which highlights the benefits derived from the trans-
formation of the underlying state constraints from a boundary value problem into a
terminal value problem and the use of the adjoint method for the efficient computation
of gradients. To carry out this comparison we first reformulate the NM+1 2×2 linear
systems in 2NM +4 unknowns given in (3.8) and the two boundary conditions given
in (3.9) into a single (2NM + 2)-dimensional linear system of equations in 2NM + 2
unknowns. Indeed, by making use of the boundary conditions (3.9) to move the two
determined quantities AM0 = A0 and BMNM+1 = 0 to the right-hand side, we obtain
the (2NM + 2)-dimensional linear system

(5.4) AM (U, Vbias)X
M = bM0 ,

where

XM =
[
BM0 AM1 BM1 AM2 BM2 · · · AMNM BMNM AMNM+1

]T
,

bM0 =
[ −A0e

ik0x0 −ik0A0e
ik0x0 0 · · · 0

]T
,

(5.5) AM (U, Vbias) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

v0 QM
0 0 · · · 0

0 I −PM1

I −PM2
...

...
. . .

. . .

I −PMNM−1 0

0 · · · 0 QM
N vN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with PMn = PM
n (U, Vbias), n = 1, 2, . . . , NM−1, are as they were defined in (3.8), I is

the 2× 2 identity matrix, v0 =
[
e−ik0x0 −ik0e

−ik0x0
]T

, vN =
[ −1 −ikN+1

]T
,

QM
0 =

[ −1 −1
−ikM1 ikM1

]
and QM

N =

[
eik

M
NMLM

NM e−ikMNMLM
NM

ikMNMe
ikMNMLM

NM −ikMNMe
−ikMNMLM

NM

]
.
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Under mild assumptions on the total energy E, the layer potentials U = {Ui}Ni=1,
and the bias voltage Vbias, Theorem 4.5 implies that the matrix given in (5.5) is
nonsingular and, consequently, that the linear system given in (5.4) admits a unique
solution. If, for each j = 1, 2, . . . , ν, we define the (2NM+2)-dimensional row vector
cj by

cMj =
[
0 0 · · · √

kN+1

/ (√
k0A0

) ]
,

the performance index (3.10) can now be written as

(5.6) JM (U) =

ν∑
j=1

∣∣∣∣T0 (Vj)−
∣∣∣cMj XM (U, Vj)

∣∣∣2
∣∣∣∣
2

,

where XM (U, Vbias) is the unique solution to the linear system (5.4) corresponding
to the layer potentials U and bias voltage Vbias.

The gradient with respect to U, ∇JM (U), of the performance index JM given
in (5.6) can also be computed via the application of the static form of the adjoint
method described in section 3.2. For each j = 1, 2, . . . , ν, we define the adjoint system
by

(5.7) AM (U, Vj)
∗
ZMj = 4

(
cMj
)∗

cMj XM
j

(
T0 (Vj)−

∣∣∣cMj XM
j

∣∣∣2) ,
where the entries in the (2NM+2)-dimensional vector ZMj are known as the adjoint or

costate variables, XM
j = XM (U, Vj) is the unique solution to the linear system (5.4)

corresponding to the layer potentials U and the bias voltage Vj , and Λ∗ denotes the
conjugate transpose of a matrix Λ with complex entries. Note that nonsingularity of
the matrix AM (U, Vj) given in (5.5) ensures that the adjoint system admits a unique

solution ZMj . Then

∇JM (U) = −2

ν∑
j=1

(
T0 (Vj)−

∣∣∣cMj XM
j

∣∣∣2){2Re(XM
j

)∗ (
cMj
)∗

cMj ∂X
M
j

/
∂U
}

= −
ν∑
j=1

Re
(
ZMj

)∗
AM (U, Vj) ∂X

M
j

/
∂U

=

ν∑
j=1

Re
(
ZMj

)∗ (
∂AM (U, Vj)

/
∂U
)
XM
j ,(5.8)

where in the final expression in (5.8) we have used the identity

AM (U, Vbias)
(
∂XM

j

/
∂U
)
= −

(
∂AM (U, Vbias)

/
∂U
)
XM
j ,

which follows immediately by differentiating (5.4). We note that the arguments given
in section 4 guarantee that the matrix AM (U, Vj) and the vector XM

j = XM (U, Vj)
are both differentiable with respect to U.

It now follows that in each step of an iterative optimization scheme, both the value
of the performance index JM and its gradient ∇JM (U) can by computed efficiently
by sequentially solving the two linear systems (with only a single LU decomposition
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Table 5.5

Tabulated results showing CPU time (in seconds) that it took to calculate the value of the
performance index JM and its gradient ∇JM (U) for different levels of discretization M for both the
boundary value (BV)- and terminal value (TV)-based schemes using both finite differencing (FD)
and the adjoint (A) to compute the gradient.

Method\M 2 4 8 16 32
BV FD 8.8 20.5 108.4 898.0 6611.5
BV A 1.8 4.1 21.7 179.6 1322.3
TV FD 5.0 7.5 15.2 30.1 63.0
TV A 1.0 1.5 3.0 6.0 12.6

required because the two system matrices are the same up to conjugate transpose)
(5.4) and (5.7),

AM (U, Vj)X
M
j = bM0 and

AM (U, Vj)
∗
ZMj = 4

(
cMj
)∗

cMj XM
j

(
T0 (Vj)−

∣∣∣cMj XM
j

∣∣∣2) ,(5.9)

and then computing the sum (5.6) and inner product in the final expression in (5.8)
given by

JM (U) =
ν∑
j=1

∣∣∣∣T0 (Vj)− ∣∣∣cMj XM
j

∣∣∣2
∣∣∣∣
2

,

∇JM (U) =

ν∑
j=1

Re
(
ZMj

)∗ (
∂AM (U, Vj)

/
∂U
)
XM
j .(5.10)

In Table 5.5 we compare the amount of CPU time (in seconds) required to compute
the value of the performance index and the gradient for a sample problem involving
N = 10 potential layers and ν = 26 bias voltages for different levels of discretization
M by the boundary value problem formulation just described with the terminal value
problem reformulation studied in sections 3 and 4. In each case we compute the
gradient using both finite differencing and the adjoint method. It is immediately
clear from the table that, for all levels of discretization, in both the boundary value
and terminal value formulation, the adjoint method takes about one fifth as much
time as the finite-difference method. This is not surprising since with 10 potential
layers, the finite-difference method requires 11 system solutions, whereas the adjoint
requires only 2 (i.e., the forward system and the adjoint system). What is more
striking, however, is the significant savings in time afforded by the use of the terminal
value formulation as the level of discretization increases. Indeed, in the case of the
terminal value formulation, CPU time grows linearly with M, while in the case of
the boundary value formulation, an elementary fit of the data reveals that CPU time
growth is proportional to Mα , where α is approximately 2.5.

6. Discussion and conclusion. We have developed a scheme for efficiently
identifying optimal designs of electronic devices whose physical behavior is deter-
mined by solutions of the Schrödinger equation. Our general approach was illustrated
by determining the locally optimal conduction band potential energy profile V (x )
for desired electron transmission as a function of applied voltage bias across a semi-
conductor device. The optimal design problem was formulated as the minimization
of a least-squares performance metric. The elastic scattering of an electron incident
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on the potential required for the evaluation of the performance metric was calcu-
lated by a propagation matrix method that uses a piecewise constant approximation
for V (x ). The underlying boundary value problem was reformulated as a terminal
value problem. In this way the efficient computation of highly accurate gradients
of the transmission coefficient with respect to the design parameters in the form of
layer potentials required for optimization became amenable to the use of the adjoint
method as it is typically applied in the context of evolution equations. We were able
to rigorously establish the numerical stability of the method and the convergence of
the approximating solutions to the state equations and their gradients with respect
to the design parameters as well as the convergence of the solutions to the resulting
approximating optimal design problems to an optimal design for the original infinite
dimensional device.

Numerical studies show the utility of our approach for achieving control over
electron transmission as a function of voltage bias. Linear, square, and square-root
dependence of transmission over a finite range of applied bias is achieved, illustrating
control over what is typically an exponential dependence of transmission for simpler
potential energy profiles. As pointed out in [2], electron transmission is altered by ad-
dition of potential energy steps that give rise to broad resonances. Also, as discussed
in [2], the superposition of these resonances is both the mechanism by which transmis-
sion is controlled and the reason why solutions are stable against small perturbations.
The nonmonotone convergence of locally optimal design with increasing discretiza-
tion observed in Figures 5.1–5.6 may also be attributed to the same superposition of
broad resonances due to potential energy steps. The locally optimal potential energy
profiles V (x ) are nonintuitive in the sense that, at least initially, it is difficult to use
previous experience to determine the transmission as a function of potential bias and
the range of values of potential bias over which it applies.

Useful extensions of the work presented here include calculation of electron current
as a function of applied voltage bias across the device and incorporation of Poisson’s
equation to solve for finite depletion in the electrodes. Comparing our theoretical
predictions with results from laboratory experiments would validate our approach to
device design. Also of interest are approaches to global optimization, dimensionality
reduction, and robustness that exploit the methods described in this paper.

We anticipate that our general approach could be appropriately modified and be
of great help in determining optimal configurations of other forms of electronic devices
that operate based on the principles of quantum mechanics. It is a potentially efficient
approach to realizing otherwise nonintuitive device designs.
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