Self-homodyne RF-optical microdisk receiver

Mani Hossein-Zadeh and A.F.J Levi

Advanced Network Technology Lab.

University of Southern California

CLEO 2004

San Fransisco, May 19th 2004

Conventional and microphotonic RF receiver architecture

Self-homodyne RF-photonic receiver

- Transmitted carrier RF format
 - Nonlinear mixing of carrier and sidebands in the receiver
 - No local oscillator required
- Photonic baseband down-conversion
 - Second-order nonlinear modulation with optical transfer function ($P_0 \mu V_{RF}^2$)

RF-photonic LiNbO₃ microdisk technology

LiNbO₃ microdisk modulator Small volume: 3 mm³ = p×3×0.4 mm³

- large electro-optical coefficient $(r_{33} = 30.8 \times 10^{-12} \text{ m/V})$
- High-Q optical whispering-gallery (WG) resonance: 2×10⁶- 6×10⁶ (loaded), 1.2×10⁷ (unloaded)
- Long photon life time :
 1.6 5 ns (loaded), 9.5 ns (unloaded)
- Long interaction length: 0.2-0.7 m (loaded), 1.3 m (unloaded)
- High-Q RF resonator : 70-90 (loaded), $G_v \propto vQ_{RF}$

RF-photonic application

- Optical modulation
 - Iow power optical amplitude modulation
- RF signal processing in optical domain
 - high-frequency operation
 - low loss in optical domain
 reduced newer consumption
 - ♦ reduced power consumption
 - laser diode local oscillator
 - \diamond optical isolation

1 mm

Simultaneous electrical and optical resonance

Combination of *microdisk* and *RF-photonic* technology demonstrated in **RF-photonic** LiNbO₃ microdisk receiver

LiNbO₃ microdisk modulator

Linear and nonlinear modulation

14.6 GHz LiNbO3 microdisk modulator

- 14.6 GHz LiNbO₃ microdisk modulator
 - 3 mm diameter LiNbO₃ microdisk
 ♦ D = 3 mm, t = 400 mm
 - Q = 4 8 10⁶, *FSR* = 14.6 GHz
 - Single prism optical coupling
 - Improved RF coupling
 - fine tuning of the ring/microstripline coupling coefficient: Critical coupling with 300 mm gap.
 - Modified E-field distribution

 cylindrical symmetric E-field distribution
 - \diamond enhanced E-field intensity

Power sensitivity of single-frequency linear modulation at 14.6 GHz

Critical optical coupling and second-order nonlinear modulation with microdisk modulator

Experimental arrangement

Single tone down-conversion

Optimizing modulation index for single frequency down-conversion efficiency

RF modulation format effect

- Total received RF power » -15 dB
- Transmitted carrier format
 - $\Leftrightarrow \text{ modulation index } m < 2$
- Optimized modulation index
 - measurement m » 0.7
 - ♦ calculation (square law response) m » 0.7

Calculated down-conversion efficiency and second-harmonic suppression ratio based on ideal square law response

(Down-conversion efficiency, P_{ob}/P_{om} , is defined as the ratio of modulated optical power at baseband frequency and the total modulated optical power)

At small signal regime ($P_{RF} < -10$ dBm) a modulation index of m = 0.7 results in 25% down-conversion efficiency and about 15 dB second-harmonic suppression ratio.

Conclusion

• 0.7< *m* <0.8 simultaneously optimizes linearity and efficiency of the conversion

Measured 10 Mb/s data down-conversion from 14.6 GHz carrier

Received RF power (dBm)

10 Mb/s, 50 Mb/s and 100 Mb/s data down-conversion from 14.6 GHz carrier

- Ku-band photonic RF receiver
 - **RF carrier frequency : 14.6 GHz**
 - Baseband: 10 Mb/s, 50 Mb/s, 100 Mb/s NRZ PBRS 2⁷-1
 - *m* = 0.7
 - Received RF power : -15 dBm (integrated power measured within 100 MHz bandwidth centered at 14.6 GHz)

Wireless data communication with self-homodyne microdisk optical receiver

22 mm

Tunable RF

open termination

Wireless self-homodyne microdisk **RF-photonic receiver Down-converted data** 14.6 GHz 4-patch antenna array ٠ High sensitivity microdisk optical modulator **Original data RF**-photonic nonlinear modulation **Carrier frequency : 14.6 GHz** Modulation index: m = 0.8٠ Baseband: 10 Mb/s NRZ PBRS 2⁷-1 Input RF power to transmit antenna: 28 dBm **RF** coupling fine tuning

Future: Photonic RF receiver

Monolithic integration of photonic RF receiver

ELECTROMAGNETIC WORLD! in which DC-to-light is used for communication

