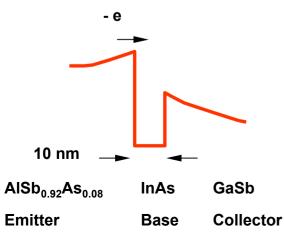
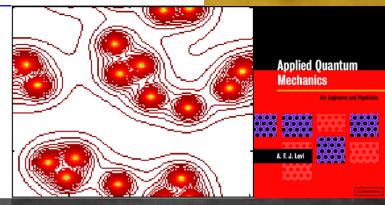
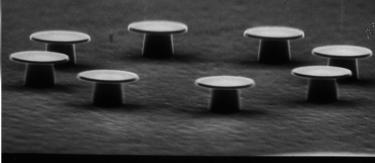
Frontiers in device engineering:

Synthesis for non-intuitive design


High-productivity design tools for 21st century nano-technology


SPIE, January 21, 2008


A.F.J. Levi http://www.usc.edu/alevi

Adaptive quantum design of small systems

- Device synthesis
 - Atoms-up configurations for function
- Optimization
 - Non-intuitive design and discovery
- Nanophotonics
 - Scaled semiconductor lasers
 - Sub-wavelength cavity design, switching
 - Electromagnetic scattering
 - Aperiodic dielectric structures
- Semiconductor device physics
 - Nonequilibrium electron transport
 - HBTs, NETs
- System engineering
 - High performance electronics
 - Interconnects
 - RF systems

X7,000

1µm WD12

0004

20KU

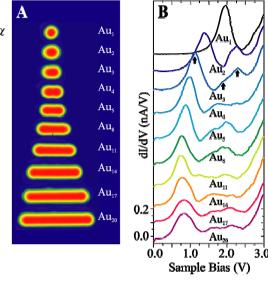
Technology mega-trends: Transistor scaling will flat-line

10 Preparing for the end of Moore's Law **Increasing susceptibility** 3um to technological surprise After 2020: 2um 1.5um **Rules for building** 10 1.0um 1 systems changes **0.7x per** 0.8um End of Moore's generation Increased risk of 0.5um Law: Approach 0.35um technological surprise to system 0.25um innovation Solution: Create design 0.18um Micron 0.13um GATE changes 0.1 tools that contain the 0.090um 0.065um knowledge to secure 0.035um systems beyond 2020 endpoint 0.01 **Increase efficiency of** scientific discovery and technological **Death zone?** development 0.001 1980 1990 2010 2020 1970 2000 2030

Year

What is the scaling paradigm in technology beyond 2020?

- Not physical scaling of device size to increase number of devices per mm² and thereby increase system functionality
- It is increased functionality via manipulation of new degrees of freedom
 - Single electron states in a nano particle
 - Single electron picture
 - Interacting electrons in presence of coulomb interaction
 - Collective excitations (e.g. plasmonics)
 - Hybridization
 - Bonding and chemical specificity
 - Electron spin
 - Magnetization
 - Light-matter interaction
 - Strong coupling
 - Nonequilibrium processes
 - fs time scales
- *Efficient* exploitation requires new design tools
 - Many degrees of freedom
 - Initially non-intuitive configurations

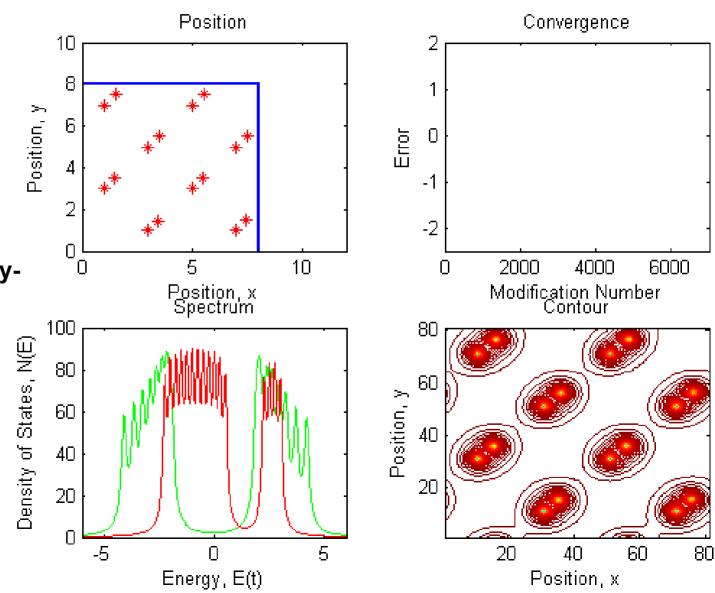

Example: Atoms-up device synthesis for quantum systems: Broken symmetry enables function

- > *N* particle system of atoms with overlap of atomic wave functions dependent on distance, $t_{r,r'} = |r r'|^{-\alpha}$ e.g. $\alpha = 3$
- Hamiltonian includes interactions between all atoms

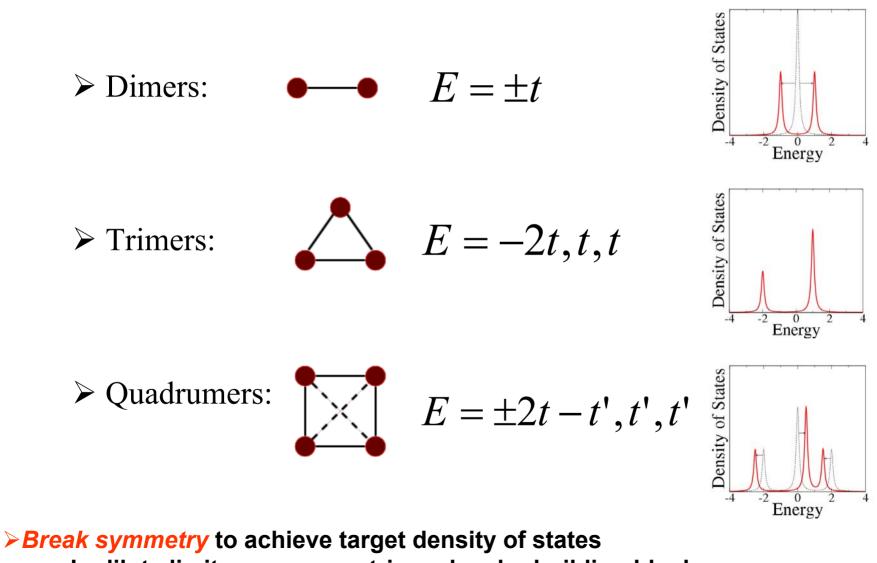
$$\hat{H} = -\sum_{\mathbf{r},\mathbf{r}'} t_{\mathbf{r},\mathbf{r}'} \left(\hat{c}_{\mathbf{r}}^{\dagger} \hat{c}_{\mathbf{r}'} + \hat{c}_{\mathbf{r}} \hat{c}_{\mathbf{r}'}^{\dagger} \right)$$

Numerically determine eigenvalues and eigenstates of system with Hamiltonian

$$\hat{H} = \begin{bmatrix} 0 & t_{12} & t_{13} & . \\ t_{21} & 0 & t_{23} & . \\ t_{31} & t_{32} & 0 & . \\ . & . & . & . \end{bmatrix}$$

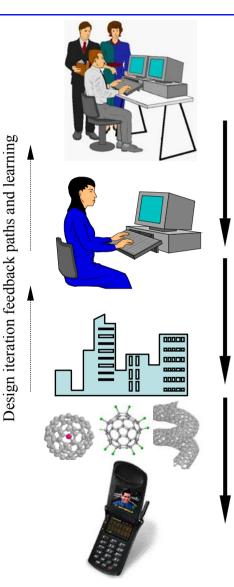

Example: Tailoring Electronic Properties of Atomic Chains Assembled by STM, N. Nilius and T. M. Wallis and W. Ho, Appl. Phys. A 80, 951-956 (2005)

- Determine physical quantity of interest e.g. density of states N(E)
 - By breaking translational symmetry of the system the desired response can be obtained
- ➤ Compare with objective function and perform guided random walk to minimize $\Delta = |N(E) - N_{obj}(E)| \rightarrow 0$


Example: Atoms-up system design using an optimizer

Visualization of adaptive algorithm: Initial 2D periodic array of atoms Tight binding description of electrons > Periodic boundary condition (blue line) >Asymmetric densityof-states objective **Break symmetry to** achieve objective density of states - Local update, guided random walk >Non-intuitive solution - New

understanding



Learning from output of synthesis tools: Molecular building blocks in the dilute limit

- In dilute limit use asymmetric molecular building blocks

Vision for future device synthesis: System function *made to order* in nano-factories

Path to production of new functional components

System needs

- Specification of required response function

Device synthesis tools for quantum systems

- Translation of specifications into physical constraints
- Search and optimization of actual response relative to target response

Nano-factory

 Fabrication of *non-intuitive* device designs using structures with nano- and atomic scale tolerance

Functional system components

 Delivery and integration of functional components to system user Example of more sophisticated physical model: Linear response of inhomogeneous media, $\varepsilon(\mathbf{r}, \mathbf{r}', \omega) = \varepsilon_{ph}(\mathbf{r}, \mathbf{r}', \omega) + \chi_{el}(\mathbf{r}, \mathbf{r}', \omega)$

>Assume positive jellium background. Potential, V(r), and $\varepsilon_{ph}(\mathbf{r}, \mathbf{r}', \omega) = \varepsilon_{ph}(\omega)$

> Solve Schrödinger equation for unperturbed system of non-interacting electrons

$$H_0 = -\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})$$

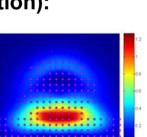
Linear response theory (the induced charge density is linearly proportional to the total potential)

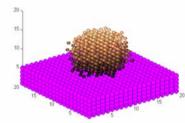
$$\phi_{\text{tot}}(\mathbf{r}) = \phi_{\text{ext}}(\mathbf{r}) + \phi_{\text{ind}}(\mathbf{r})$$

> The induced potential satisfies Poisson equation:

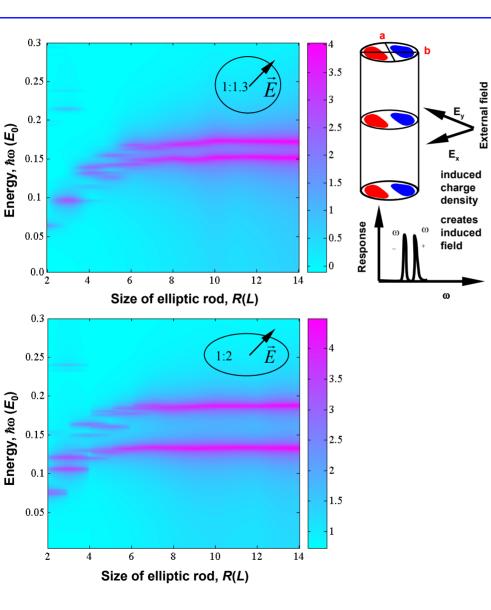
$$\nabla^2 \phi_{\text{ind}}(\mathbf{r}) = 4\pi \rho_{\text{ind}}(\mathbf{r}) \qquad \phi_{\text{ind}}(\mathbf{r}) = \int_V \frac{\rho_{\text{ind}}(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}'$$

Calculation of induced charge density (within the linear response approximation):


$$\rho_{\text{ind}}(\mathbf{r}') = \int_{U} \chi_{\text{el}}(\mathbf{r}', \mathbf{r}'', \omega) \phi_{\text{tot}}(\mathbf{r}'') d^{3}\mathbf{r}''$$

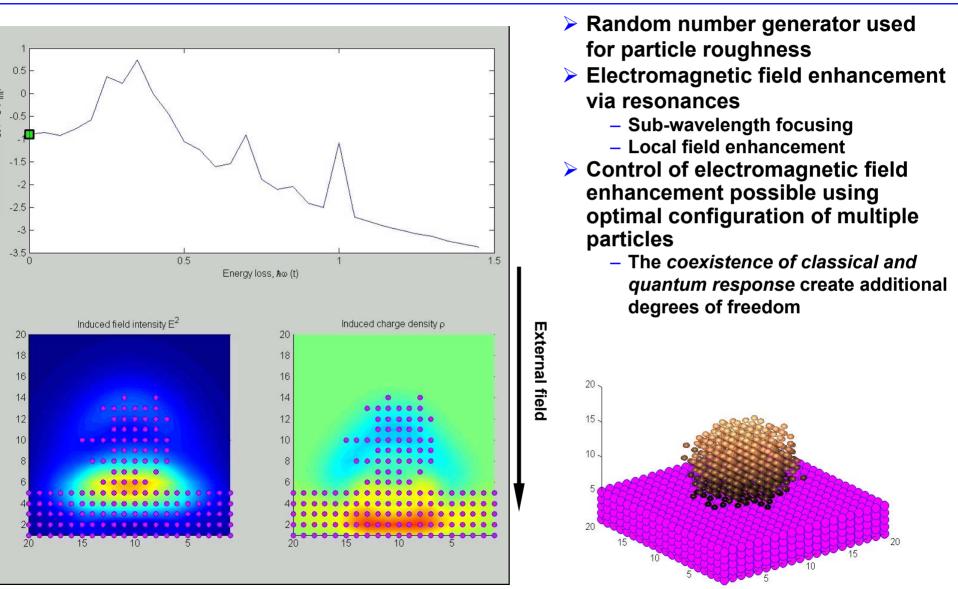

Non-local density-density electron response function using RPA :

$$\chi_{\rm el}(\mathbf{r},\mathbf{r}',\omega) = \sum_{i,j} \frac{f(E_i) - f(E_j)}{E_i - E_j - \hbar\omega - i\gamma} \psi_i^{(0)}(\mathbf{r}) \psi_i^{(0)}(\mathbf{r}') \psi_j^{(0)*}(\mathbf{r}) \psi_j^{(0)}(\mathbf{r}')$$


Self-consistent integral equation for the induced potential

$$\phi_{\text{ind}}(\mathbf{r}) = \sum_{i,j} \frac{f(E_i) - f(E_j)}{E_i - E_j - \hbar\omega - i\gamma} \int_V \frac{\psi_i^*(\mathbf{r}')\psi_j(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}' \int_V \psi_j^*(\mathbf{r}'') (\phi_{\text{ext}}(\mathbf{r}'') + \phi_{\text{ind}}(\mathbf{r}''))\psi_i(\mathbf{r}'') d^3 \mathbf{r}''$$

Size-effects for linear dielectric response of elliptic rod: The classical-quantum boundary for nano-metla light interaction



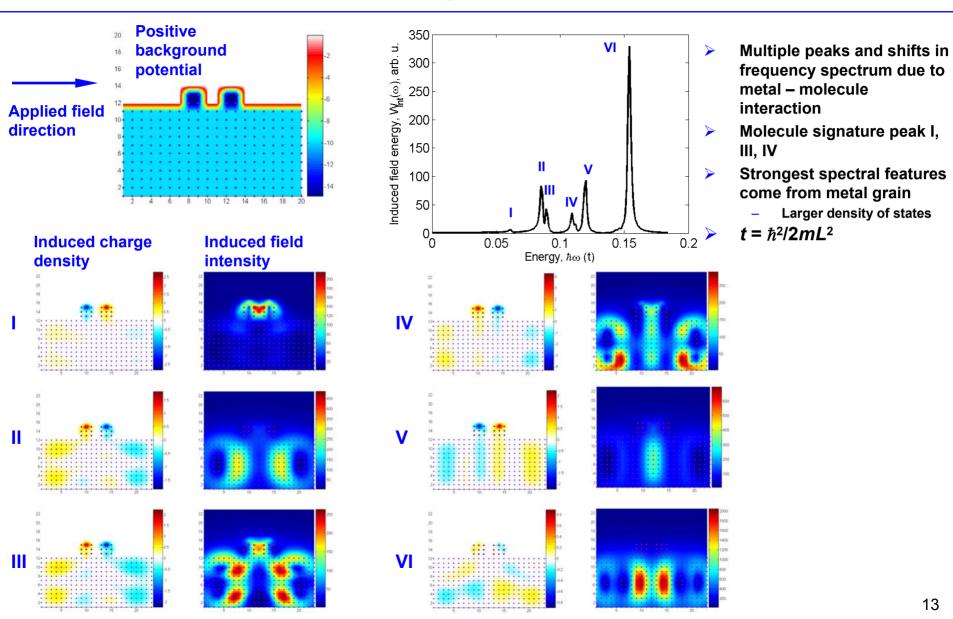
- Elliptic cylinder with semi-axis a and b where x²/a² + y²/b² = R² and a < b. Periodic boundary conditions in z direction
- Energy of induced electric field W_{ind} in elliptic rod as a function of field frequency ω and R

$$W_{ind} \propto \int_{V} \left| \vec{\mathrm{E}}_{ind} \right|^2 d^3 \vec{r}$$

- > Aspect ratios a:b = 1:1.3, and a:b = 1:2, classical Mie plasmon frequencies $\omega^+ = \omega_p (b/(a+b))^{1/2}$ and $\omega^- = \omega_p (a/(a+b))^{1/2}$ where $\omega_p = (4\pi e^2 \rho/m)^{1/2}$
- GaAs, ρ = 10¹⁸ cm⁻³, L = 1.28 nm, E₀ = ħ²/2mL² = 330 meV, γ = 10⁻³, T = 0 K
- For R < 6 L quantum finite size effects control dielectric response</p>
- Collective excitation phase velocity larger than Fermi velocity
- Spectral strength at lower frequencies for smaller L due to anharmonicity of the jellium potential

Frequency response of rough nanoparticle on a surface

Plasmon-induced sub-wavelength light transmission

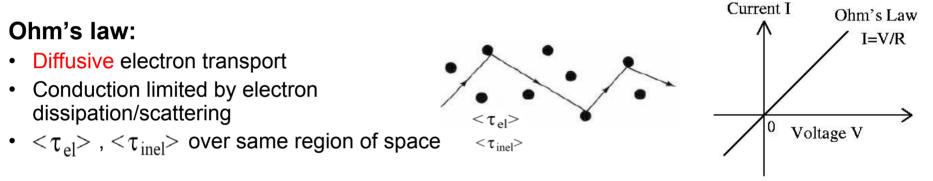


- Plasmon-enhanced light penetration of sub-wavelength diameter hole
 - Enhancement in transmission is about 2 orders of magnitude
- Control of electromagnetic field penetration possible using optimal spatial configuration
 - The coexistence of classical and quantum response create additional degrees of freedom

Parameters

- Number of electrons in the system:
 N = 126
- Dimension of the metal foil: 60x60x16
- Radius of hole *R* = 4*L*
- All previous calculations use idealized geometry and idealized or phenomenological description of dielectric response
 - H.A. Bethe, Phys. Rev. 66, 163 (1944)
 - Schatz, Optics Express **13**, 3150 (2005)

Optical excitation of diatomic molecule on surface of metal grain

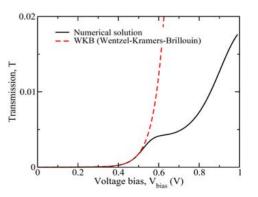


Quantum transport in electronic devices

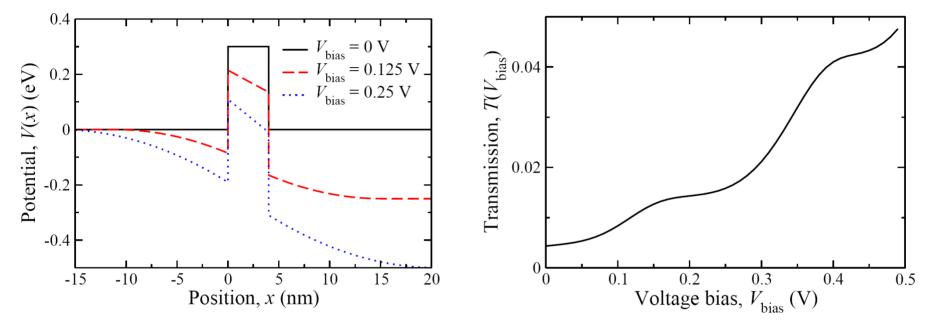
- Nanoscale electronic devices using optimal design
 - Self-consistent Schrödinger Poission solver required
 - Schrödinger equation $\hat{H}\psi = E\psi$
 - Time dependent Schrödinger equation $\hat{H}\psi = i\hbar\partial_t\psi$
 - Poisson equation $\nabla^2 \phi = -\rho I \varepsilon$
 - Maxwell equations
- Prototype problem is modification of conduction band profile to create linear current-voltage characteristic in presence of ballistic transport and tunneling
 - Can inherent nonlinear transfer characteristics and exponential sensitivity in nanoscale devices be suppressed?
- Exhaustive search methods to be used and then compared quantitatively with other approximate methods
 - Efficient optimizers for electronic devices

Example: Quantum transport in electronic devices

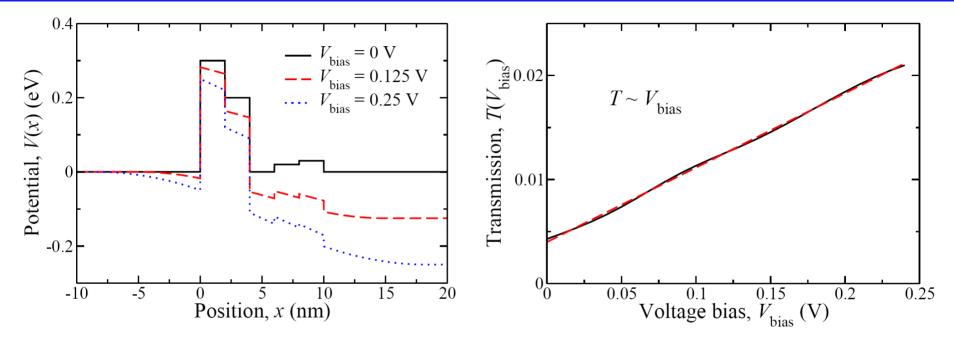
- Prototype problem is modification of conduction band profile to create linear current-voltage characteristic in presence of ballistic transport and tunneling
 - Can inherent nonlinear transfer characteristics and exponential sensitivity in nanoscale devices be suppressed?


Electronic nanoscale semiconductor device:

- **Ballistic** electron transport
- Exquisite current control in potential barrier, limited by quantum mechanical transmission


$$|| au_{el} >$$
 , $< au_{inel} >$ $||$ spatially separated

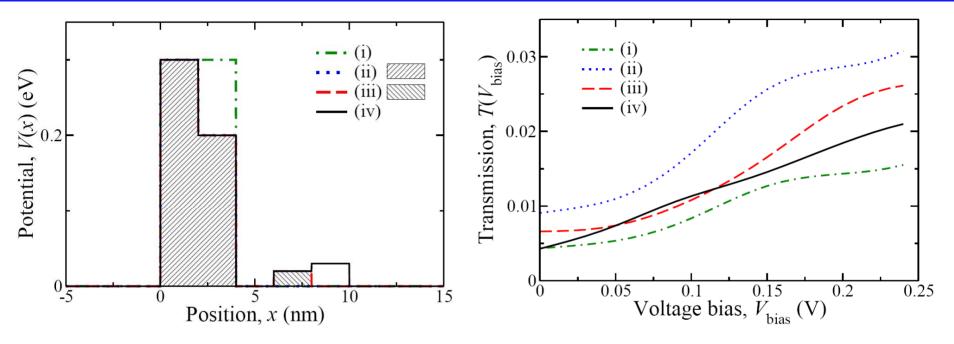
potential barrier left electrode right electrode incident e transmitted e distance * power dissipation current control in electrode $<\tau_{el}>$



Electron transmission-voltage characteristic

- > Rectangular barrier 0.3 eV energy (Al_xGa_{1-x}As), 4 nm wide
- > Electrode carrier concentration is $n = 10^{18}$ cm⁻³
- > Effective electron mass $m^* = 0.07 \times m_0$ (GaAs)
- Incident electron energy E = 26 meV
- Solve Schrödinger equation in piecewise fashion using propagation matrix and calculate transmission T(V_{bias})
- > Use Poisson equation to calculate band bending at V_{bias}

Example: Best potential profile with linear transmission voltage found using exhaustive search



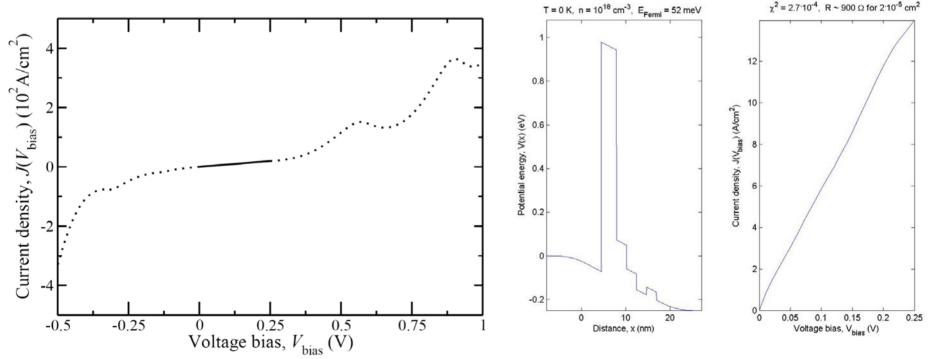
> Non-intuitive potential profile, V(x)

- Exhaustive search on grid with $\Delta x = 2$ nm (8 monolayer GaAs), $\Delta V = 0.01$ eV.
- Maximum on-site potential 0.3 eV, total width 10 nm, incident electron energy E = 26 meV
- Quadratic deviation from linear transmission: $\chi^2 = 5.1 \times 10^{-7}$

$$\chi^{2} = \frac{\sum_{V_{\text{bias}}} (J(V_{\text{bias}}) - J_{0}(V_{\text{bias}}))^{2}}{\sum_{V_{\text{bias}}} (J(V_{\text{bias}}))^{2}}$$

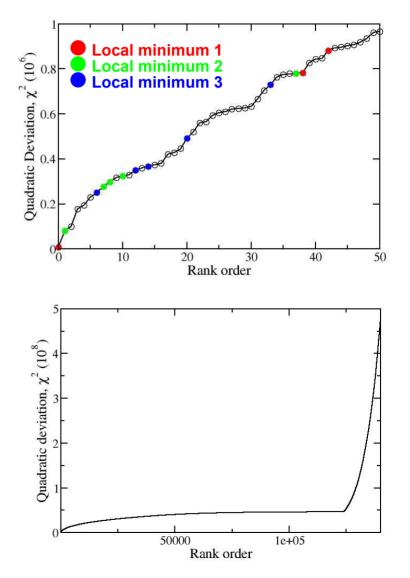
Understanding the physics: Evolution from single barrier (i) to optimal potential profile

Superposition of broad scattering resonances from different potential steps results in linear transmission-voltage curve


Control of pole energy and strength determines transfer function

Insensitivity to monolayer variations in potential and robustness of design associated with broadness of resonances

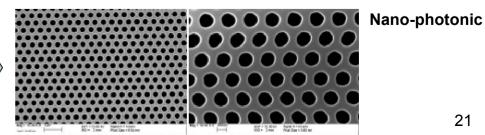
Quantum electron transport: Non-intuitive design


Synthesis of current voltage characteristics in semiconductor devices

- Machine generated non-intuitive conduction band potential profile for linear current-voltage characteristics from 0 V to 0.25 V
 - Current state-of-the-art limited to elastic scattering only
 - Future physical model development to include inelastic processes
 - Future integration with optimizer

Combining exhaustive search with adjoint method

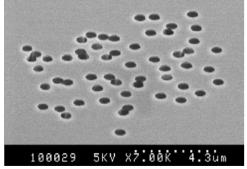
- Exhaustive search among all potentials on a specified discrete grid in space and potential energy:
 - $\Delta x = 4$ monolayers, where a monolayer in GaAs is 0.282665 nm
 - $\Delta V = 0.036062 \text{ eV}$, corresponds to Al concentration x = 0.04 in GaAs/Al_xGa_{1-x}As conduction band heterojunction
 - Number of barriers = 5, $V(x) = 0 \dots 5 \Delta V$
- Target function is transmission-voltage characteristic for which V(1) = 2 Δ V, V(2) = 10 Δ V, V(3) = Δ V, V(4) = 0.0eV, V(5) = Δ V
 - Take each of the best 50 potentials as an initial choice and then calculate the local minimum using adjoint method and FMINCON to identify basins of convergence
- Potentials from grid-based exhaustive search converge to different local minima (different colored dots)
 - Non-convex solution space


Aperiodic dielectric design

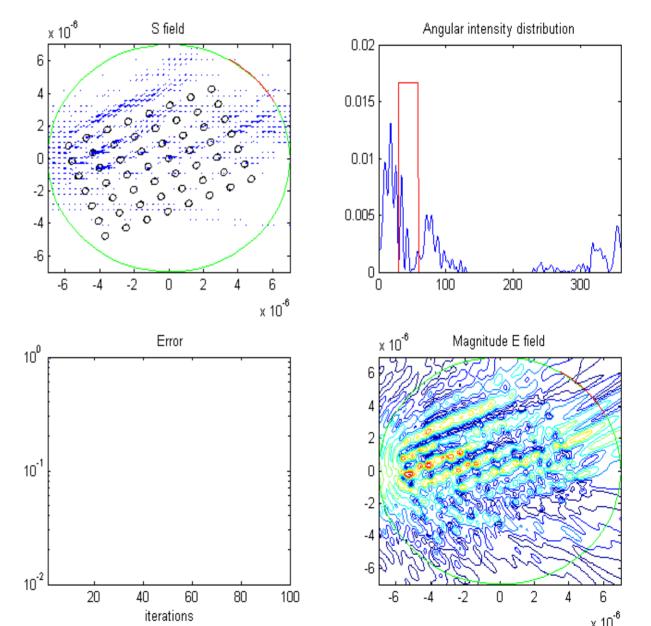
Goal

- Verify experimentally device synthesis tools and methodology
- mm-wave (37.5 GHz, λ_0 = 8 mm) test-bed
 - Rapid prototyping, high tolerance control ($\pm 2\mu m / \lambda_0 = 1/4000$), relatively low cost
 - Compare with achievable tolerance for nanophotonics which is Λ = 500 nm, ±5 nm / Λ = 1/100
 - Solve Helmholtz equation $\partial_x \frac{\mu_0}{\mu_0} \partial_x E + \partial_y \frac{\mu_0}{\mu_0} \partial_y E + \omega^2 \mu_0 \varepsilon_0 \varepsilon_{rel} \cdot E = 0$
 - FDFD
 - Interior boundary is TE10 mode at wave guide aperture
 - In modeling domain $\mu_r = 1$ and $\varepsilon_r = \varepsilon_r(x, y)$ varies discontinuously at cylinder boundary
- Meet top-hat design metrics
 - 30 dB side lobe suppression, ±0.15 dB ripple, 90% coupling
- Develop efficient robust optimization design tools
 - Local optimization using adjoint method
 - Global optimization, heuristic rule-based method, interactive visualization
- Generalized methodology
 - High dimensionality of design space, nonlinearity, non-convexity
 - Exponential sensitivity, optimization without single objective function

mm-wave

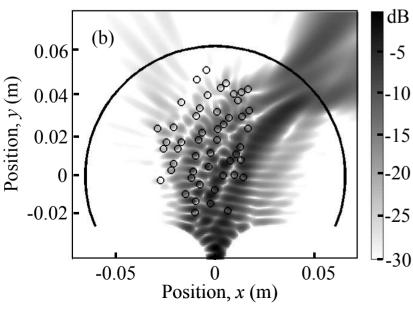


Aperiodic nano-photonics: *Uniform* illumination of a surface


New generation of broken symmetry nano-photonics devices

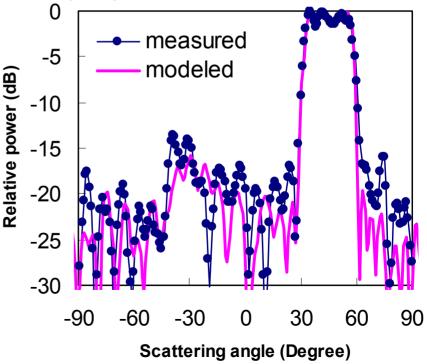
56 dielectric scattering centers configured to convert gaussian profile input beam of width $2\sigma = 4$ μ m into 30° – 60° top hat intensity function at 7 μ m radius observation circle

Size of aperiodic nanophotonic structure dominated by size of input beam



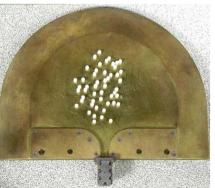
Aperiodic nano-photonic design patterned using ebeam lithography in Si slab waveguide geometry

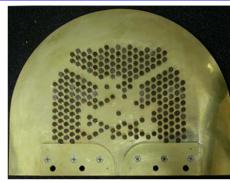
Aperiodic electromagnetic design: Experimental verification of uniform illumination between 30° and 60° scattering angles

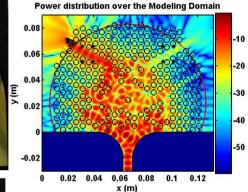


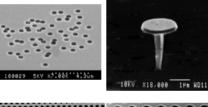
Adjoint method

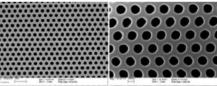
Good agreement between model and measured data at 37.5 GHz (λ_0 = 8 mm)

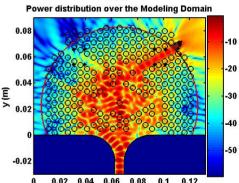

- 95% calculated, 92.4% measured power uniformly illuminates between 30° and 60° scattering angles
- ±0.725 dB calculated, ±0.885 dB measured ripple in illuminated power between 30° and 60° scattering angles

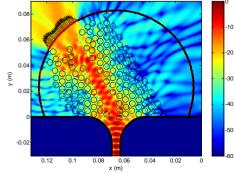

Nanophotonic and RF design

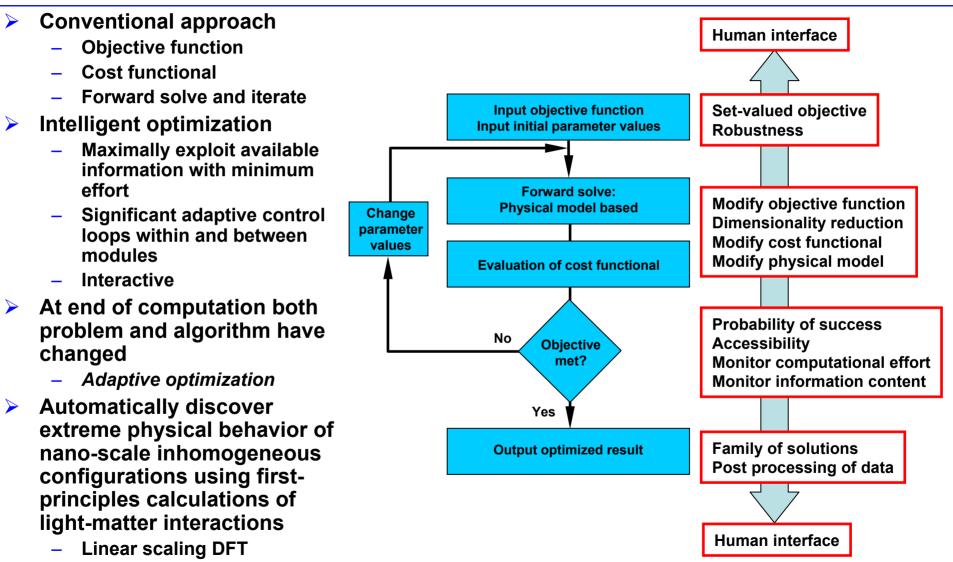

Aperiodic arrangements of dielectrics and metals for filters and micro-spectrometers


- Synthesis for non-intuitive design
 - Compact WDM filter and spectrometer for chip-scale photonics
- Exploration for new functionality
 - Accessibility of scaled nanophotonic devices
 - Room-temperature operation of $\lambda_0{}^3$ volume laser diode
 - Single photon source at λ_0 =1550 nm or λ_0 =850 nm
 - Lasing based on Si materials
 - New configurations using negative index material for unique behavior and performance
 - Discovery of performance metrics for new building blocks such as resonators and lenses
- Optimal design of negative index physical media
 - Optimized meta-materials
 - Metal and dielectric configurations with low dispersion and low losses at RF and optical frequencies









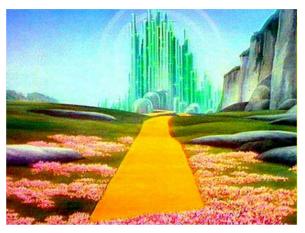
Adaptive optimization concept

 Quantized electromagnetic field

Requirements for system function made to order

00000 00000 nnnm

Path to production of new functional components


Efficient

- Realistic physical models
- Adaptive optimization
- Human interaction for learning (real time)
- System needs
 - Specification of required response function

Device synthesis tools for quantum systems

- Translation of specifications into physical constraints
- Search and optimization of actual response relative to target response
- Nano-factory
 - Fabrication of *non-intuitive* device designs using structures with nano- and atomic scale tolerance
- Functional system components
 - Delivery and integration of functional components to system user

Securing systems beyond Moore's Law endpoint in 2020

The semiconductor industry technology roadmap

When the road turns to dirt, the dinosaurs die

with The semicon Ultimate Technology

Nano-metal Ilya Grigorenko Stephan Haas Electron transport Petra Schmidt Gary Rosen Aperiodic design Chunming Wang Philip Seliger