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Abstract

A physical model of electron transport through nanoscale semiconductor heterostruc-

tures is developed featuring self-consistent solution of the Schrödinger and Poisson

equations for the potential. Using this model heterostructure tunnel diodes featuring cus-

tomized current-voltage characteristics are designed using principles of optimal design.

Control over electron transport in these devices, having lengths in the tens of nanome-

ters, is possible by exploiting the wave nature of the electron.

Limits of this control are explored using a linear objective function for optimal

design of AlξGa1−ξAs heterostructure tunnel diodes. Device optimizations demonstrate

that greater than 65 dB dynamic range over a 0.4 V peak-to-peak voltage swing may be

achieved in a device that is only 17 nm thick. It is also shown how material choice and

device lengths can limit achievable linearity.

The ability to design heterostructure diodes featuring customized current-voltage

characteristics enable co-design of circuits and the devices used in those circuits. As an

example, an AlξGa1−ξAs heterostructure tunnel diode is customized using principles of

optimal design for use in an RF mixer by parametrically defining the current-voltage

characteristic. It is shown that the customized current-voltage characteristic of this

device is able to reduce spurious frequency components created by a switching mixer.

In particular, fourth-order harmonic at twice the intermediate frequency is reduced by

28 dB, reducing by 4 the number of filter poles necessary for a fixed dynamic range.

xv



Development of the physical model is possible by considering coherent scattering

between an electron and phonon. A simple quantum model that captures the physics of

this scattering regime is used to determine when predictions of first-order perturbation

theory are qualitatively accurate with respect to a fully quantum model. It is found that

small matrix elements cannot be used to justify perturbative methods. Only when feed-

back effects occur predominantly in the reflection coefficient do perturbative predictions

appear to emulate quantum solutions. Situations are demonstrated in which perturbation

theory cannot emulate quantum predictions even in the presence of weak coupling and

large elastic scattering strengths.
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Chapter 1

Introduction

Control over the input-output characteristics of nano-scale heterostructure devices is

possible by exploiting the wave nature of the electron in precisely defined potential

profiles. Through high-precision crystal growth methods structures shorter than a char-

acteristic inelastic scattering mean free path, λin, are accessible allowing electrons to

propagate through the structure coherently. Coherence in a non-equilibrium electron

transport regime enables the potential profile of a heterostructure device to control out-

put behavior through manipulation of electron transmission resonances via conduction

band offsets controlled through material choice.

Two examples of devices exploiting degrees of freedom available through het-

erostructure material choice and non-equilibrium electron transport are shown in Fig.

1.1. The non-equilibrium electron transistor (NET) shown in part (a) uses large con-

duction band offsets to energetically separate equilibrium and non-equilibrium electron

distributions in the base [22]. This feature reduces electron-electron scattering that may

otherwise occur in the base region, increasing current gain. Part (b) shows an InP het-

erostructure bipolar transistor (HBT) [38]. Here designers have created a chirped super-

lattice in the collector to reduce the probability of electrons scattering into the L-band

minimum. Its effectiveness is made possible only through the wave nature of the elec-

tron.

These devices are the product of an ad-hoc design process. In this design process,

decisions are driven by the knowledge and intuition of the designer. Because of the
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Figure 1.1: (a) Non-equilibrium electron transistor (NET) featuring material choices
that isolate equilibrium and non-equilibrium electrons in the base region [22]. (b) InP
heterostructure bipolar transistor (HBT) featuring a chirped superlattice in the collec-
tor. The superlattice is designed to prevent electrons from scattering into the L-band
minimum, and is effective only because of the wave nature of the electron in a non-
equilibrium transport regime [38].

complexity of non-equilibrium electron transport, final designs may exhibit known sym-

metries and operate in an intuitive manner. Of the feasible design space, it is likely that

only those regions containing these features are searched. And although the final design

is likely the most optimal one considered by the designer, it will be unknown whether

the design is optimal either locally or globally.

An optimal design process improves upon ad-hoc design by executing a systematic

search of the design space for those solutions that most closely match a desired objec-

tive. This search may find locally optimal solutions that exhibit broken symmetries and

behave in a non-intuitive fashion. Complexity can improve results by providing mul-

tiple, locally optimum solutions in a non-convex solution space. Through analysis of

these designs, additional physical insight may be possible. This insight can be passed

back into the optimization through, for example, improved physical models or more

natural objective functions.

Proof-of-principle demonstrations of control over electron transport in nanoscale

heterostructure tunnel diodes using optimal design are shown in Fig. 1.2. The
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Figure 1.2: (a) Optimized potential profile and (b) transmission probability of an
AlξGa1−ξAs heterostructure tunnel diode optimized for linear transmission as a func-
tion of Vbias for an electron of energy E = 26 meV and effective electron mass
m = 0.07 × m0 [39]. The optimal potential was found through an exhaustive search
of the design space in which physical constraints on the potential barrier energy, V (x),
were 0 ≤ V (x) ≤ 0.3 eV discretized into 1 meV increments. The n-type doping con-
centration is ND = 1× 1018 cm−3. (c) Optimized potential profile and (d) current den-
sity of AlξGa1−ξAs heterostructure tunnel diode optimized for quadratic current-voltage
characteristic [40]. The design was discovered using the Newton-Raphson method to
minimize cost. Simulation parameters are electron effective mass m = 0.07 × m0,
n-type doping concentration ND = 1× 1018 cm−3, and temperature T = 300 K.

AlξGa1−ξAs tunnel diode of parts (a) and (b) is optimized for linear transmission prob-

ability as a function of voltage bias, Vbias , for an electron with energy E = 26 meV and

effective electron mass m = 0.07×m0 [39]. The AlξGa1−ξAs tunnel diode of parts (c)

and (d) is optimized for a quadratic current-voltage characteristic as a function of Vbias at

temperature T = 300 K [40]. Each of these designs displays broken symmetry and their

3



input-output characteristic is not readily apparent through intuition of wave mechan-

ics. The potential well features of these potential profiles show that the optimization

algorithm utilizes electron transmission resonances to control electron transport.

1.1 Basic optimal design algorithm

Optimal design is an automated iterative design process, the basic algorithm of which

is shown in Fig. 1.3. A physical model must be chosen or developed that captures

the essential physics of a device, enabling accurate prediction of a measurable quantity.

Here the measurable quantity of interest is the current density as a function of Vbias ,

Jsim(Vbias). After executing a forward solve of the physical model for a design configu-

ration, its performance is compared against the objective current density, Jobj(Vbias).

A metric for optimality of a given design is the cost functional, C(p), where the

design parameters are contained in the vector p. A common cost functional is the dis-

tance between Jsim and Jobj in the least squares sense,

C(p) =
ν∑
j=1

wj
(
Jobj(V

j
bias)− J

j
sim(V j

bias, p)
)2
, (1.1)

where wj is a weighting factor. This form of the cost functional is chosen because it

guarantees a continuous derivative at local minima, enabling the use of gradient-based

methods of optimization. Since more optimal designs have lower cost, the optimization

is cast as a minimization problem.

To begin the optimal design process, an initial device configuration is chosen either

randomly or guided by intuition about an expected result. After evaluating the cost for

this configuration, the optimization algorithm chooses the next design to be simulated.

The cost for the new design is calculated, and the process is iterated until selected con-

vergence criteria are satisfied.
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Figure 1.3: Flow chart showing basic optimal design algorithm.

This process flow provides the basic algorithm that defines the optimal design pro-

cess. Further development of optimal design is possible by allowing the algorithm to

adapt to the specific optimization being performed. For example, optimizations that

become stuck in high cost local minima could adjust auxiliary parameters of either

the objective function or the device configuration. In this way, objective functions and

device configurations can be optimized together, yielding natural combinations which

could provide more optimal solutions.

1.2 Improved physical models

For optimal design to be effective the physical model must capture the essential physics

and accurately predict behavior of a given device configuration. Such a requirement can

exclude from optimization device types for which the physical model is insufficient. As

an example, consider the tunnel field effect transistor (TFET). The TFET is a promising

candidate for replacement of CMOS in low-power applications as scaling limits are

reached and Moore’s Law comes to an end [31]. The ability for a MOSFET to drive
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current at very low gate voltages is fundamentally limited by the high energy Boltzmann

tail of the Fermi distribution to a subthreshold swing of S = kBT ln(10) ≈ 60 mV/dec,

where T is the absolute temperature.

TFETs overcome this limit by using the band gap to truncate the high energy Boltz-

mann tail of the thermal distribution. This effectively lowers the operating temperature

of the device but requires carriers to tunnel through the band gap. Predictions of transis-

tors capable of subthreshold swings of S = 15 mV/dec with ON currents of ION = 1.3

mA/µm [17] have yet to be achieved experimentally. Although Si TFETs have been

shown that exhibit S = 52.8 mV/dec and ION = 12 µA/µm [6], convincing experi-

mental evidence has not been shown of TFETs exhibiting subthreshold swings below

50 mV/dec.. Higher ION may be achieved by using smaller band gap materials. An

In0.7Ga0.3As TFET has been reported with ION = 50 µA/µm but with subthreshold

swing S = 93 mV/dec [48].

The contrast between predictions of simulation and experimental results indicate

that simple effective mass models used to model TFETs are insufficient. Additional

complexities such as complex band structure and reflection due to mismatch of the char-

acter of the valence and conduction band wave functions should be incorporated into the

model before optimization of these devices is attempted.

Complexities such as these can yield surprising new physics that cannot be captured

by simpler models. For example, it has been shown that silicon twist boundaries can

yield large reflections for low energy conduction band electrons [41]. This defect in the

crystal structure changes only the character of the wave function across the boundary.

Absence of a velocity mismatch indicates that an effective mass model is not capable of

capturing this effect.

Another example considers a many-body effect by accounting for the Coulomb inter-

action between a pair of electrons propagating in proximity to one another. In Ref. [34]
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it was shown that in the presence of strong Coulomb interaction one electron tunnel-

ing through a potential barrier can enhance the probability of another electron tunneling

through the same barrier at a later time.

To incorporate many-body effects into the Landauer model of electron transmis-

sion [19, 20] non-equilibrium Green’s functions (NEGF) [27] have been developed.

Although NEGFs present a formally exact solution to electron transport, the many-

particle interactions make numerical solutions intractable and usually force one to resort

to perturbative methods. This often reduces the solution to a random phase approxima-

tion, averaging out many quantum mechanical effects and resulting in a semi-classical

approximation often interpreted in terms of tunneling and scattering rates for localized

particles [8, 29].

Resorting to perturbative methods can eliminate physical effects associated with the

scattering mechanisms being modeled. As an explicit example, in the next section I

calculate scattering rates associated with the electron-phonon interaction using first-

order perturbation theory and analyze the results in terms of lost physics.

1.2.1 First-order perturbation theory

The rate at which an electron in initial state |k〉 with energy Ek scatters into final state

|k′〉with energyEk′ due to a perturbing potential V̂ is typically calculated using Fermi’s

golden rule [23],

1

τk,k′
=

2π

h̄
|〈k′|V̂ |k〉|2D(Ek′)δ(Ek′ − Ek ± h̄ω), (1.2)

where D(Ek′) is the density of final states and ±h̄ω represents energy loss or energy

gain, respectively, during the interaction. For elastic scattering h̄ω = 0. Fermi’s golden

rule is a first-order approximation that assumes the initial state is weakly perturbed by
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Initial state has Pk = 1 Final state dominated by Pk ≈ 1 

Final scattered states have Pk′ ≥ 1 

Figure 1.4: Diagram showing first-order approximation for Fermi’s golden rule, where
the probability of an electron occupying state |k〉 is Pk. Fermi’s golden rule assumes
that the electron is weakly perturbed by the interaction, decoupling the scattering states
from one another and violating unitarity.

the interaction. This is shown pictorially in Fig. 1.4, where the probability of the elec-

tron occupying state |k〉 is represented by Pk.

In general, each pair of scattering states can have a non-zero matrix element coupling

them. However, by assuming the incident electron is weakly perturbed, these matrix

elements are dominated by interaction with the incident state, and all other matrix ele-

ments are ignored. This removes interference and feedback between scattering states

and destroys unitarity.

In polar semiconductors, electron and longitudinal-optic (LO) phonons interact via

the Frölich interaction. LO phonons are characterized by displacement of the anion

and cation of the lattice in opposite directions from their equilibrium positions, the ori-

entation of which relative to an interacting electron is shown in Fig. 1.5. The wave

packet representation of the electron in the Fig. represents the finite coherence length

of the electron due to collisions. Displacement of the ions creates an electric dipole

moment which enables the electron and lattice to exchange energy and momentum via

the Coulomb potential. The electron may excite and, at temperatures above T = 0 K,

absorb real LO phonons having momentum h̄q and energy h̄ω0. These processes corre-

spond to momentum exchange h̄k′ = h̄k ± h̄q and energy exchange E ′ = E ∓ h̄ωLO,
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Figure 1.5: Diagram depicting interaction of an electron wave packet and LO phonons
having energy h̄ωLO. In a polar semiconductor such as GaAs LO phonons displace
lattice ions from their equilibrium positions (dashed line) such that electric dipoles are
created which enable the lattice and electron to exchange momentum and energy.

where the top sign corresponds to phonon emission and the bottom sign corresponds to

phonon absorption.

The perturbing potential is the Coulomb potential of the electric dipole of the ions.

The matrix element coupling initial and final states is

〈
k

∣∣∣∣ −e2

4πε(r)

∣∣∣∣k′〉 =

∫
d3re−ik·r

−e2

4πεr
eik
′·r = − e2

ε(q, ω)q
, (1.3)

where the dielectric function is [42]

ε(q, ω) = ε∞

(
1 +

ω2
TO − ω2

LO

ω2 − ω2
TO

)
. (1.4)

Here ε∞ is the high frequency permittivity, ωLO is the LO phonon frequency, and ωTO is

the transverse optical (TO) phonon frequency. In GaAs the phonon energies are h̄ωLO =

36 meV and h̄ωTO = 33 meV and the high frequency permittivity is ε∞ = 11.1 × ε0,

where ε0 is the permittivity of free space.
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Substituting (1.3) and (1.4) into (1.2) and integrating over all final states, the scatter-

ing rate is [7]

1

τLO

=
e2mh̄ωLO

2πh̄2
√

2mEk

(
1

ε∞
− 1

εDC

){
g(h̄ωLO) sinh

(√
Ek

h̄ωLO

)

+(g(h̄ωLO) + 1) sinh

(√
Ek − h̄ωLO

h̄ωLO

)}
,

(1.5)

where εDC is the low frequency permittivity and in GaAs is equal to εDC = 13.2 × ε0.

The left-hand term in the brackets corresponds physically to phonon absorption, and the

right-hand term in the brackets corresponds physically to phonon emission.

Figure 1.6 shows the calculated inelastic LO phonon scattering rate at temperatures

T = 0 K and T = 300 K, with the scattering rate for an electron with energy Ek = 100

meV indicated. At room temperature, an electron with energy Ek < h̄ωLO may only

absorb phonons. Once the electron has enough energy to excite LO phonons, the scat-

tering rate quickly increases. For an electron with energy Ek = 100 meV, the scattering

rate 1
τLO

= 9.1 ps−1 indicates an inelastic mean free path λLO = 77.8 nm.

At temperature T = 0 K, and for electron energies Ek ≤ h̄ωLO, (1.5) indicates that

no interaction can occur between the electron and LO phonons. Physically, however,

the electron can scatter off of virtual phonons at these energies, and will have a finite

scattering rate. Additionally, it is possible for the electron to emit a second phonon

after emission of an initial phonon. However, such a process requires the one- and two-

emitted phonon inelastic channels to interact. Since these matrix elements have been

excluded from the calculation, Fermi’s golden rule is not capable of capturing some

physics of this interaction.
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Figure 1.6: Calculated inelastic scattering rate for an electron of energy Ek interacting
with LO phonons in GaAs, with scattering rates for an electron with energy Ek = 100
meV indicated. At temperature T = 0 K, no scattering may occur until the electron has
energy Ek > h̄ωLO. Simulation parameters are electron effective mass m = 0.07×m0,
LO phonon energy h̄ω0 = 36 meV, TO phonon energy h̄ωTO = 33 meV, high frequency
permittivity ε∞ = 11.1× ε0, and low frequency permittivity εDC = 13.2× ε0.

1.2.2 Going beyond perturbation theory

Perturbative approaches ignore unitarity and coherent processes that could exist and be

important in small nano-scale devices. Simple first-order perturbative approximations

cannot access key features of non-perturbative quantum predictions. The preservation of

unitarity in a self-consistent quantum model drives a feedback mechanism between all

inelastic channels. Even under the condition of weak coupling, which is commonly

invoked to justify perturbation theory, the incident electron must be affected by the

existence of inelastic channels and there is no guarantee the predictions of first-order

perturbation theory can qualitatively mimic the behavior of a non-perturbative quan-

tum model. A theory capable of properly describing the transition from the coherent

quantum transport regime to the incoherent semi-classical regime has yet to be devel-

oped. Only by starting from a quantum model can the transition from quantum to semi-

classical regimes be discovered, as perturbative methods can eliminate physical effects

without the possibility of recovery.
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1.3 Organization of thesis

In Chapter 2 the physical model for electron transport in a non-equilibrium, non-

interacting regime is presented. Within this thesis I define non-interacting to mean that

no interaction occurs between each electron and any other particle in the system. Since

the longest structure considered in Chapter 3 has length L = 25 nm, L � λLO and a

non-equilibrium transport regime may be assumed. Using this model the self-consistent

solution to the coupled Schrödinger and Poisson equations for the potential is discussed.

However, scattering is required for maintaining contact neutrality as well as forming an

accumulation of charge in the accumulation region [11]. Modifications to the model

used in calculating the self-consistent potential necessary for creation of these features

are shown.

In Chapter 3 the model developed in Chapter 2 is used to design nano-scale het-

erostructure diodes exhibiting custom current-voltage characteristics. A linear objective

is chosen to explore the level of control possible through optimal design. The generally

nonlinear current-voltage characteristic of non-equilibrium electron transport indicates

that a linear objective should be difficult to achieve and so may provide insight into

the physical mechanisms responsible for control. Results of optimizations for multiple

device lengths and objective function slopes are compared to determine the physical

mechanisms limiting control.

The ability to design devices featuring custom current-voltage characteristics

enables co-design of circuits and the devices within the circuits. An example of this

design approach is demonstrated in Chapter 3. Here an RF switching mixer is con-

sidered. A typical RF switching mixer produces spurious harmonics which must be

filtered in the following receiver stage. The current-voltage characteristic of a two-

terminal device capable of attenuating spurious harmonics is defined parametrically. A

12



heterostructure tunnel diode featuring this parametrically defined current-voltage char-

acteristic is designed, and it is shown through simulation that the manufacturable device

is capable of enhancing mixer functionality.

Chapter 4 studies a simple, exactly solvable quantum mechanical model of the

electron-phonon interaction to discover connections with semi-classical perturbation

theory. First-order perturbation theory for the quantum model is derived using the first

term in the Born series. Comparison with the exact quantum model shows that in the

weak coupling limit perturbation theory is not a good approximation to quantum behav-

ior. In the presence of a strong potential barrier, predictions of first-order perturbation

theory can qualitatively emulate predictions of an exactly solved quantum model. It is

also shown that situations exist where, even in the presence of weak coupling and strong

elastic scattering, perturbation theory may not qualitatively emulate quantum behavior.
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Chapter 2

Calculation of the self-consistent

potential

Interaction between electrons through the Coulomb interaction may be described by a

scalar potential energy surface. The equation governing the shape of this potential, φ, in

terms of the local electron density, n, is the Poisson equation

∇ (ε(r)∇φ(r)) = e (q(r)− n(r)) , (2.1)

where q(r) represents additional charge in the system, e is the electron charge, and ε(r) is

the spatially-dependent permittivity of the medium. The equation governing the steady-

state spatial distribution of an electron in terms of the potential is the time-independent

Schrödinger equation

− h̄2

2m
∇2ψ(r) + (U0(r)− φ(r))ψ(r) = Eψ(r), (2.2)

where m is the effective electron mass, ψ(r) is the electron wave function, U0(r) is the

conduction band edge (on-site) potential, and E is the total energy of the electron. A

self-consistent potential is any potential which can simultaneously satisfy both of these

equations.

As an example, consider the AlξGa1−ξAs resonant tunnel diode shown in Fig. 2.1(a),

having two GaAs contacts with n-type doping concentrationsND = 1×1018 cm−3. The

potential barriers have 0.25 eV conduction band offsets, a 2.8 nm thickness, and are
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Figure 2.1: (a) Potential profile of AlξGa1−ξAs resonant tunneling diode calculated both
self-consistently and using the depletion approximation. Storage of charge within the
structure results in band bending and a significant increase in potential energy. (b) Elec-
tron concentration for potentials of part (a) and background doping concentration pro-
file, which has been smoothed using an error function profile. Simulation parameters are
electron effective mass m = 0.07×m0, temperature T = 300 K, n-type doping concen-
tration ND = 1 × 1018 cm−3, dopant diffusion parameter Ld = 1 nm, and Vbias = 0.1
V.

separated by a 5 nm thick layer of GaAs. The applied voltage bias Vbias = 0.1 eV has

been chosen to align a resonant state with thermally occupied electrons in the emitter

(left-hand) contact. Dopant atoms are diffused into the active region using an error

function profile characterized by a diffusion parameter Ld = 1 nm, defined as the length

on either side of the metallurgical junction over which diffusion extends.

Figure 2.1(a) shows the potential profile for this device calculated both self-

consistently and using the depletion approximation. Comparison of the classical

depletion approximation and quantum self-consistent potential demonstrates additional

physics captured by a quantum treatment. Part (b) of the Fig. shows the charge density

corresponding to these two potentials as well as the background doping profile.

In the contacts the wave nature of electrons causes the electron density to become

more spatially distributed than predicted by the classical depletion approximation. As
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a result, predicted accumulation and depletion region lengths are quite different and the

electric field in the device region is more effectively screened.

The resonant state causes a storage of electrons between the potential barriers. These

electrons repel one another, and this repulsion is captured by an increased potential

energy in the vicinity of the quantum well. The changed potential will in turn modify

the charge density. This interdependence of charge density and potential requires that

the two quantities be solved self-consistently.

2.1 Prescription for calculating the self-consistent

potential

The electron density n and potential φ are nonlinearly coupled, and may be calculated

by iteratively solving the Schrödinger and Poisson equations. The iterative solution

proceeds according to the following algorithm:

1. Calculate initial guess for potential, φ(0).

2. Solve Schrödinger equation for electron wave functions, ψ(m): φ(m) → ψ(m)

3. Calculate current density, J (m): ψ(m) → J (m)

4. If
∣∣∣J(m)−J(m−1)

J(m−1)

∣∣∣ < εJ , exit algorithm

5. Calculate charge density, n(m): ψ(m) → n(m)

6. Solve Poisson equation for new potential, φ(m+1): n(m) → φ(m+1)

7. Return to step 2.

In the algorithm, m is the iteration number and w is an under-relaxation parameter

constrained to 0 ≤ w ≤ 1. This parameter controls the speed of the solver and can
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be used to avoid oscillations and instabilities, as will be discussed in section 2.6.5. As

current density is the measurable quantity of interest, the convergence criterion is a

maximum relative error in current density between iterations of εJ , where typically εJ =

10−3. Higher precision is also possible, but I have found this value to provide a good

balance between simulation time and accuracy.

2.2 Solution of the Schrödinger equation

The physical model consists of an effective mass, non-interacting electron transport

model with occupation of accumulation region quasi-bound states added phenomeno-

logically [10]. The model is non-interacting in the sense that interactions between each

individual electron and any other particle in the system have been turned off. Thus, all

relaxation processes are assumed to occur outside of the simulation domain and electron

transport occurs in a non-equilibrium regime. Only one-dimensional, n-type majority

carrier devices are considered and the cross-sectional area is assumed to be sufficiently

large that quantization effects may be ignored. For each AlξGa1−ξAs layer, the relative

permittivity is εr = 13.2− 3.1× ξ [1], the on-site potential is U0 = 0.8355× ξ, and for

simplicity an effective electron mass m = 0.07×m0 is assumed in all layers.

Shown schematically in Fig. 2.2 is injection of charge into a heterostructure device

and occupation of accumulation region quasi-bound states. It is assumed that the con-

tacts maintain a thermal electron distribution, from which electrons in scattering states

are injected into the simulation domain. Occupation of localized states in the accu-

mulation region is necessary for an accumulation of charge in this region [11]. Since

electrons in these states are not fully bound but may tunnel into a scattering state on one

side, they are quasi-bound. A detailed discussion of the occupation of these states is

deferred to section 2.4.3.
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Figure 2.2: Schematic representation of electrons injected into device region from con-
tacts maintaining thermal distributions of electrons in the presence of an applied voltage
bias, Vbias . Also indicated is occupation of electrons in accumulation region quasi-
bound states. The emitter and collector contacts are both n-type doped with doping
concentration ND and characterized by chemical potentials µL and µR, respectively at
temperature T . Vbias causes the chemical potentials far away from the device region to
differ by µR = µL − eVbias.

Since only layered heterostructure devices are considered, the potential varies in only

one dimension. The Hamiltonian is divided into components perpendicular (x-direction,

indicated by ⊥) and parallel (y- and z-directions, indicated by ‖) to the heterostructure

layer interfaces. Accordingly, in a plane wave basis the electron wave function for state

|k〉 with energy Ek injected from contact α is

ψαk(x, y, z, t) = eik‖·(yŷ+zẑ)ψαk⊥(x)e−iωt, (2.3)

where
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Ek = E‖ + E⊥ =
h̄2|k‖|2

2m
+
h̄2k2

⊥(x)

2m
+ U(x) = h̄ω, (2.4)

k⊥(x) =

√
2m(E⊥ − U(x))

h̄
, (2.5)

U(x) = U0(x)− φ(x). (2.6)

α indicates the contact from which the carrier is injected, with α = E for the emitter

contact or α = C for the collector contact.

The perpendicular component of the electron wave function is calculated by solving

the one-dimensional time-independent Schrödinger equation

− h̄2

2m

∂2

∂x2
ψαk⊥(x) + U(x)ψαk⊥(x) = Ekψ

α
k⊥

(x), (2.7)

where boundary conditions appropriate for injection from contact α are used.

2.2.1 Propagation matrix method

The Schrödinger equation is solved using the propagation matrix method [23, 16]. In

this method the spatial domain is discretized into N + 1 regions and the potential within

each region of the domain is assumed constant. For each electron the convention is

adopted that region j = 0 corresponds to the contact from which it is injected.

Figure 2.3 shows two regions of the simulation domain, with elastic scattering ampli-

tudes aj , bj , cj , and dj at the step change in potential occurring at position x = 0 shown

schematically. A plane wave basis is chosen for the electron wave function, yielding

wave functions in regions j and j + 1 of
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Figure 2.3: Diagram of elastic scattering from a step change in potential occurring at
position x = 0. The propagation matrix for region j accounts for free electron prop-
agation across length Lj and scattering at the interface between regions j and j + 1.
Quantities aj , bj , cj , and dj are wave function coefficients associated with region j as
shown.

ψj(x) = aje
ikjx + bje

−ikjx,

ψj+1(x) = cje
ikj+1x + dje

−ikj+1x.
(2.8)

The two boundary conditions

ψj(0) = ψj+1(0),

∂ψj(x)

∂x

∣∣∣∣
x=0

=
∂ψj+1(x)

∂x

∣∣∣∣
x=0

,
(2.9)

are enforced at x = 0.

Applying these conditions to (2.8) yields the matrix equation

 aj

bj

 =
1

2

 1 +
kj+1

kj
1− kj+1

kj

1− kj+1

kj
1 +

kj+1

kj

 cj

dj

 = pstep,j

 cj

dj

 . (2.10)
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Between interfaces the electron propagates freely across a distance Lj , which is

accounted for by the matrix

 aj

bj

 =

 e−ikjLj 0

0 eikjLj

 cj

dj

 = pfree,j

 cj

dj

 . (2.11)

Combining (2.10) and (2.11), the propagation matrix for region j is

pj = pfree,jpstep,j =
1

2


(

1 +
kj+1

kj

)
e−ikjLj

(
1− kj+1

kj

)
eikjLj(

1− kj+1

kj

)
e−ikjLj

(
1 +

kj+1

kj

)
eikjLj

 . (2.12)

Since aj+1 = cj and bj+1 = dj , multiplying all propagation matrices together cou-

ples the electron flux into and out of the simulation domain by the equation

 A

B

 =
0∏

i=N

pi

 C

D

 = P

 C

D

 . (2.13)

As shown in Fig. 2.4, A represents the injected electron flux, B represents the reflected

electron flux, C represents the transmitted flux, and D represents the electron flux that

is back-scattered from outside of the simulation domain.

2.2.2 Scattering state wave functions

Physical boundary conditions at the edges of the simulation domain are required to solve

(2.13). Physically, an electron of unit flux density is injected (A = 1) and it is assumed

that there is no back-scattered component (D = 0). Using these boundary conditions

the matrix P must be calculated twice. The first calculates C,
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Figure 2.4: Diagram of boundary condition for electrons injected from each of the con-
tacts. Wave function coefficients A and B are associated with the injecting contact,
while coefficients C and D are associated with the opposite contact. Boundary condi-
tions for two-calculation and one-calculation solution methods are shown.

 1

B

 =

 P1,1 P1,2

P2,1 P2,2

 C

0

 ⇒ C =
1

P1,1

, (2.14)

and the second calculates the electron wave function

 aj

bj

 =

j∏
i=N

pi

 1
P1,1

0

 . (2.15)

An alternative approach that calculates the electron wave function using only one

calculation of P is to cast (2.13) as a terminal value problem. It is assumed that an

electron of unit flux leaves the simulation domain through the contact opposite the

injecting contact (C = 1) and that no reflection occurs outside of the simulation domain

(D = 0). Once the wave function coefficients in all regions have been calculated, the

physical boundary condition A = 1 is enforced by normalizing the wave function to a0.

In this formalism,
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 aj

bj

 =
1

a0

j∏
i=N

pi

 1

0

 . (2.16)

Boundary conditions for these two solution methods are shown in Fig. 2.4.

2.2.3 Quasi-bound state wave functions

A quasi-bound state is a resonance within the potential well of the accumulation region.

By injecting electrons of unit flux through the barrier and into the well, as shown in

Fig. 2.5, the density of states within the well will peak at quasi-bound state resonance

energies, EB
n , where n indexes the states. Figure 2.5(a) shows the electron probability

density injected from the collector contact into a 5 nm thick rectangular potential barrier

with conduction band offset 0.25 eV subject to Vbias = 0.35 eV. The quasi-bound state

has energy EB = −33.7 meV and its wave function is shown in Fig. 2.5(b).

The wave functions of Fig. 2.5(a) are not those of electrons inelastically scattered

into quasi-bound states from the emitter, requiring an additional solve of the Schrödinger

equation. Boundary conditions for quasi-bound state wave function are A = D = 0,

and it is assumed that unity flux is exiting the right-hand side of the system (B = 1).

These boundary conditions are given in Fig. 2.5(a), which shows the quasi-bound state

wave function of part (a) overlayed onto the potential and offset by the quasi-bound state

energy.

The quasi-bound state is composed of both scattering and bound states. While nor-

malization for a scattering state is unity flux, normalization for a bound state is unit

probability of finding the electron in space. Without a source as reference, quasi-bound

state flux exiting the simulation domain cannot be assumed to equal one, and the wave

function must be normalized by other means. I assume that the electron is strongly

confined to the potential well, so that the probability of finding the electron within this
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Figure 2.5: (a) Electron probability density injected from collector contact for poten-
tial profile containing a rectangular potential barrier having a 0.25 eV conduction band
offset and a thickness of 5 nm. The quasi-bound state energy is EB = −33.7 meV.
(b) Diagram of electron injection into the accumulation region to find quasi-bound state
resonances and calculate quasi-bound state wave functions. Boundary conditions for
each calculation are indicated, and the wave function shown is that of the quasi-bound
state of part (a) offset in energy by EB. The applied voltage bias is Vbias = 0.35 eV, and
simulation parameters are electron effective massm = 0.07×m0, temperature T = 300
K, n-type doping concentration ND = 1 × 1018 cm−3, and dopant diffusion parameter
Ld = 1 nm.

region is close to unity. Letting this probability equal one, the quasi-bound states is

normalized such that

∫
`

|ψB
n (x)|2dx = 1, (2.17)

where ` is the length over which the electron is localized within the well. I have chosen

` to extend from the left edge of the domain to the point at which the quasi-bound state

wave function exits the confining potential. In Fig. 2.5 this occurs at position x = 5 nm

and it can be seen that this normalization yields a reasonable one-dimensional density

of states in comparison to N1/3
D = 106 cm−1.
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2.3 Calculation of current density

Current density in the x-direction for a single electron in state |k〉 is found by applying

Jx,k = −i eh̄
2m

(
ψk
∂ψ∗k
∂x
− ∂ψk

∂x
ψ∗k

)
, (2.18)

to the electron wave function, ψk. In steady state the current density must be constant

throughout the device and Jx,k may be evaluated at any location. However, by evaluating

(2.18) in region j = N , additional terms in the derivative from position-dependent k

and wave function coefficients are avoided due to the assumed zero electric field. In this

region the wave function for an electron in state |k〉 injected from contact α is

ψαk(x, y, z, t) =eik‖·(yŷ+zẑ)cαNe
ikNxe−iωt

=eik‖·(yŷ+zẑ) 1

aα0
eikNxe−iωt,

(2.19)

Substituting into (2.18),

Jαx,k = e
h̄kN
m

1

|aα0 |2
, (2.20)

which is the product of the electron’s charge, velocity, and transmission probability.

Total current density from contact α is found by summing this eigenvalue over all ther-

mally occupied electron states. Converting this sum to an integral,

Jαx = 2
∑
k

Jαx,kf(Ek) = 2e

∫
d2k‖
(2π)2

∫ ∞
0

dk⊥
2π

h̄k⊥
m

1

|aα0 |2
1

1 + e(Ek−µα)β
, (2.21)

where β = 1
kBT

is the inverse thermal energy, the factor of two accounts for electron

spin degeneracy, and
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f(Ek) =
1

1 + e(Ek−µα)β
, (2.22)

is the Fermi occupation factor.

Evaluation of (2.21) is simplified by converting to energy via the one- and two-

dimensional density of states,

Jαx =
em

2π2h̄3

∫ ∞
0

dE‖

∫ ∞
0

dE⊥
1

|aα0 |2
1

1 + e(Ek−µα)β
. (2.23)

Here the velocity term has been canceled by the one-dimensional density of states. The

integral over E‖ is evaluated analytically,

∫ ∞
0

dE‖
1

1 + e(E‖+E⊥−µα)β
=

∫ ∞
0

dE‖
e(µα−E‖−E⊥)β

1 + e(µα−E‖−E⊥)β

=
1

β
ln
(
1 + e(µα−E⊥)β

)
,

(2.24)

so that

Jαx =
em

2π2h̄3β

∫ ∞
0

dE⊥
1

|aα0 |2
ln
(
1 + e(µα−E⊥)β

)
. (2.25)

Total current is the difference between that of each contact. From time-reversal

symmetry, 1
aE

0
= 1

aC
0

= 1
a0

, and the applied voltage bias will separate the chemical

potentials of the two contacts by an energy eVbias. Defining current flow from emitter to

collector as positive current and dropping the ⊥ notation,

Jx = JE
x −CR

x =
em

2π2h̄3β

∫ ∞
0

dE
1

|a0|2
ln

(
1 + e(µL−E)β

1 + e(µL−E−eVbias)β

)
. (2.26)
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2.4 Calculation of the electron density

The total electron density consists of three components,

n(x) = nE(x) + nC(x) + nB(x). (2.27)

The first two terms represent electrons injected from the emitter and collector contacts,

respectively, and the final term represents the density of electrons contained within

quasi-bound states. Before discussing the calculation of these quantities, a deficiency in

the non-interacting model must be corrected.

2.4.1 Charge neutrality in the contacts

Consider a region deep within the bulk of a contact, where it is assumed that the contact

is neutral and the electric field is approximately zero. With this electric field, the Fermi

sphere is centered on k = 0. Half of the electrons have k⊥ > 0 and half have k⊥ < 0.

Now suppose that this region is divided in two and a potential barrier of arbitrary

strength is placed between the now separated contacts. With Vbias = 0 V, spatial symme-

try of the transmission and reflection coefficients force contact charge neutrality. How-

ever, once symmetry is lost by finite Vbias , asymmetry in the transmission and reflection

coefficients will eliminate charge neutrality. Of the two contacts, one will have an excess

of electrons and the other will be deficient in electrons.

If the potential barrier is strong, nearly all injected electrons will be reflected by the

potential barrier and forward and backward traveling waves sum to a charge density of

n ≈ ND. This is shown in Fig. 2.6(a), where the strong potential barrier features a

transmission coefficient T (EF = 52 meV) = 3.1×10−9, where EF is the Fermi energy.

The electron deficiency in the collector contact is due to chemical potential convergence

criterion |n−ND| ≤ 10−4×ND being greater than the electron density transmitted from
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Figure 2.6: (a) Charge density calculated without using drifted Fermi distributions for
the case of a strong (T (EF = 52 meV) = 3.1 × 10−9) potential barrier having a
0.35 eV conduction band offset and 9 nm thickness subject to an applied voltage bias
Vbias = 0.25 V. (b) Same as (a) but for a weaker (T (EF = 52 meV) = 3.7×10−3) poten-
tial barrier 3 nm in thickness. The potentials have been calculated using the depletion
approximation, and simulation parameters are electron effective mass m = 0.07 ×m0,
temperature T = 300 K, n-type impurity concentrationND = 1×1018 cm−3, and dopant
diffusion parameter Ld = 1 nm.

the emitter contact. This small error in calculated electron density will not significantly

impact the self-consistent potential.

A weaker potential barrier, however, may feature a more pronounced charge imbal-

ance. The potential barrier in Fig. 2.6(b) features transmission probability T (EF =

52 meV) = 3.7 × 10−3, causing greater charge imbalance which can lead to undesir-

able band bending near the contacts. The potentials in the Fig. have been calculated in

the first iteration of the solver, where the depletion approximation is used and this band

bending has not yet been calculated.

Figure 2.6(b) results from a transport model with no inelastic or diffusive elastic scat-

tering, preventing the distribution of electrons injected from the contacts from respond-

ing to a charge imbalance. A model that includes these scattering effects will develop

linear voltage drops within the contacts, causing injection of non-equilibrium electron
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Figure 2.7: Calculated electron density for potential profile of Fig. 2.6(b) with drifted
Fermi distributions used to neutralize the contacts. Calculated values of kαD,⊥ are indi-
cated in the Fig., and the potential barrier has a 0.35 eV conduction band offset and is 3
nm in thickness. Simulation parameters are electron effective massm = 0.07×m0, tem-
perature T = 300 K, n-type doping concentration ND = 1018 cm−3, dopant diffusion
parameter Ld = 1 nm, and Vbias = 0.25 V.

distributions. Semi-classically, this effect is captured in the Boltzmann transport equa-

tion, which predicts a shift of the Fermi sphere in the presence of scattering and an

electric field. However, without a model that accounts for scattering within the contacts,

an additional parameter must be introduced which can emulate the effects of scattering

on injected electron distributions.

I have chosen to use a drifted Fermi distribution [36], in which the electron’s kinetic

energy within the Fermi-Dirac distribution is modified to

Eα
D,⊥ =

h̄2(k⊥ − kαD,⊥)2

2m
= E⊥ +

h̄2

2m
kαD,⊥(kαD,⊥ − 2k⊥), (2.28)

where kαD,⊥ is the drifted wave vector in the x-direction for contact α. This drifted wave

vector shifts the Fermi sphere to an average electron velocity
h̄kαD,⊥
m

. Each contact will

have separate kαD,⊥, which will allow the contact to either inject additional electrons with

kαD,⊥ > 0, or inject less electrons with kαD,⊥ < 0. These two quantities are calculated

self-consistently to neutralize both contacts.
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In Fig. 2.7 the simulation of Fig. 2.6(b) has been repeated with a drifted Fermi dis-

tribution. It can be seen that the contacts are now neutralized up to the kαD,⊥ convergence

criterion |n−ND| ≤ 10−4 ×ND. The calculated values of kαD,⊥ are shown in the Fig.

2.4.2 Scattering state electron density

The electron density for scattering state |k〉 is given by the probability density

nαk(x) = |ψαk⊥(x)|2. (2.29)

Summing over all thermally occupied states and converting to an integral,

nα(x) = 2
∑
k

nαk(x)f(Ek) = 2

∫ ∞
−∞

dk⊥
2π

∫
d2k‖
(2π)2

nαk(x)f(Ek). (2.30)

Unlike the similar calculation for current density, there is no velocity term to cancel the

1√
E⊥

dependence of the one-dimensional density of states. To avoid a singularity in the

integrand, the k⊥ integral is not converted to energy. This results in an electron density

injected from contact α of

nα(x) =
m

πh̄2β

∫ ∞
−∞

dk⊥|ψαk⊥(x)|2 ln
(

1 + e(µα−EαD,⊥)β
)
. (2.31)

2.4.3 Quasi-bound state electron density

The probability of scattering state electrons occupying space in the accumulation region

is reduced due to an increased kinetic energy. To develop the accumulation of charge

necessary to form an electric dipole across the device region, significant charge must be

stored in accumulation region quasi-bound states [11]. Accurate modeling of transients
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associated with relaxation into these states requires a kinetic electron transport model.

The physical model described in this chapter however simulates steady-state response

of the electrons to an applied voltage bias. Occupation of accumulation region quasi-

bound states in this model is intended to emulate relaxation of injected electrons into

these states.

Normalization of quasi-bound state wave functions shown in section 2.2.3 yields the

one-dimensional density of states in the k⊥-direction. The two-dimensional density of

states in the k‖-directions must be found. Figure 2.8 depicts the processes related to

scattering in and tunneling out of quasi-bound states.

Electrons injected from the emitter contact may inelastically scatter into quasi-bound

states in the accumulation region with scattering rate 1
τin

. Electrons within quasi-bound

states may escape by tunneling through the potential barrier at a rate 1
τtun

. Assuming

that the potential barrier sufficiently confines electrons in the potential well such that

1
τin
� 1

τtun
, the quasi-bound states become electron reservoirs which fill to thermal

equilibrium with the emitter contact, characterized by chemical potential µL.

With this assumption, the quasi-bound state electron density is

nB(x) = 2
∑
k

|ψB
k (x)|2f(Ek) =

m

πh̄2β

∑
n

|ψB
n |2 ln

(
1 + e(µL−EB

n )β
)
. (2.32)

As an example, consider the quasi-bound state shown in Fig. 2.5. This state fea-

tures a maximum one-dimensional density of states of 1.5 × 106 cm−1 and an energy

EB = −33.7 meV. Substituting these values into (2.32), the maximum quasi-bound

state electron density in the depletion approximation is nB
max = 3.3× 1018 cm−3, and in

the self-consistent potential nB
max = 2.3 × 1018 cm−3. These values are similar to the

prediction of the depletion approximation, nB
max = 2×ND.
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Figure 2.8: Diagram depicting scattering state electrons inelastically scattering into a
quasi-bound state in the accumulation region, with this scattering characterized by a
scattering rate 1

τin
. Electrons within the quasi-bound state may escape the bound state

by tunneling through the potential barrier at a rate characterized by 1
τtun

. Assuming
1
τin
� 1

τtun
, the quasi-bound state becomes an electron reservoir which will be in thermal

equilibrium with the left-hand contact and characterized by chemical potential µL.

2.5 Solution of Poisson equation

The Poisson equation relates the net local charge density to the local curvature of the

potential. Allowing for a spatially varying permittivity, the one-dimensional Poisson

equation is

∂

∂x

(
ε(x)

∂φ(x)

∂x

)
= ρ(x) = e(ND(x)− n(x)), (2.33)

where ε is the permittivity and ρ is the net charge density. Care must be taken when

discretizing this equation, as potential and charge density are defined at points while

permittivity and electric field are defined in regions between these points. Fig. 2.9

shows how I have defined these quantities.

Each region is defined in one dimension as a point and the region to its right before

the next point. The local potential and charge density are defined at this point, while the
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Figure 2.9: Diagram showing discretization scheme and derivation for the discretized
Poisson equation. Potential φ and charge density ρ are defined at points between regions.
The regions are separated by a length dx and are characterized by permittivity ε and
electric field E.

permittivity and electric field E are defined between these points. Using the physical

relationships E = −∂φ
∂x

and ρ = ∂
∂x

(εE), the discretized Poisson equation is

1

dx2
(εj−1φj−1 − (εj−1 + εj)φj + εjφj+1) = e(ND,j − nj), (2.34)

where dx is the uniform spatial discretization length. What remains is to determine the

boundary conditions and the method of solution, both of which require consideration of

the net charge within the simulation domain.

It is desired that the self-consistent potential both drop the entire potential energy

eVbias within the simulation domain and have zero electric field at the contacts. For

the derivatives to match at the contacts, net charge within the simulation domain must

sum to zero. However, with charge density completely specified by chemical potential

µα, drifted wave vector kαD,⊥, and injection of unit electron flux, there are no additional

parameters with which charge neutrality of the device as a whole may be enforced.

Thus, matrix inversion may not be used to solve the Poisson equation, as excess charge
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in the simulation domain will result in a parabolic background potential over which the

desired features are superimposed [12].

A gradient based method will produce better results by weighting changes in the

potential to the sensitivity of the charge density to these changes. I have chosen to

solve the Poisson equation using the Newton-Raphson method with Dirichlet boundary

conditions, which yields self-consistent potentials exhibiting the desired characteristics

and qualitatively similar to the depletion approximation.

2.5.1 Solution method

Moving all terms of (2.34) to one side,

1

dx2
(εj−1φj−1 − (εj−1 + εj)φj + εjφj+1)− e(ND,j − nj) = 0, (2.35)

for which the zero may be found using the Newton-Raphson method. Letting Fj equal

the left-hand side of (2.35), the equation to be solved is [18]

∑
i

∂F
(m)
j

∂φi
δφ

(m+1)
i = −F (m)

j , (2.36)

and the updated potential is φ(m+1) = (1 − w)φ(m) + wδφ(m+1), where w is an under-

relaxation parameter.

The Jacobian, ∂Fj
∂φi

, includes the term nj
∂φi

, corresponding to the sensitivity of the

charge density to changes in potential. For the scattering state charge densities, it is

∂nαj (x)

∂φi
=

m

πh̄2β

∫ ∞
−∞

dk⊥
∂

∂φi

(
|ψαk⊥,j(x)|2 ln

(
1 + e(µα−EαD,⊥)β

))
. (2.37)
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This derivative will produce two terms, and I will first consider ∂|ψ|2
∂φ

. Given the non-

local nature of this term and the absence of a closed form expression for the dependence

of |ψ|2 on φ, calculation of this derivative can be computationally expensive, requiring

a method such as finite differences. However, from the wave nature of the electron one

might expect interference effects to smooth changes to the total charge density resulting

from local perturbations in potential.

To get a feel for the magnitude of this derivative, an example is provided in Fig. 2.10.

Here the change in probability density due to a perturbation ∆φ = 1 meV at position

x = 50 nm is shown on a log scale. In the Fig. a prime is used to indicate quantities

calculated in the presence of the perturbation. Maximum change in |ψ|2 on the order

of 0.1 is a only few percent of the maximum value of |ψ|2 = 4 (from constructive

interference of two unity flux waves). The inset shows change in charge density due to

the perturbation. When the perturbed states are summed to calculate total charge density,

deconstructive interference occurs away from the perturbation. Maximum change in

electron density for this perturbation is three orders of magnitude below ND = 1 ×

1018 cm−3 and is localized around the perturbation. Because of the small magnitude of

this derivative and the computational cost associated with its numerical evaluation, this

derivative is ignored and set to zero.

The remaining term is computed by converting the integral of (2.37) to energy,

∂nα(x)

∂φ
=

1

8π2β

(
2m

h̄3

)3/2 ∫ ∞
0

dE⊥|ψαk⊥(x)|2 ∂
∂φ

(
1√

Eα
⊥ − φ

ln
(

1 + e(µα−EαD,⊥)β
))

.

(2.38)

Changing the integration variable to E ′ = E⊥−φ and letting E ′D = h̄2kD

2m

(
kαD,⊥ − 2k⊥

)
,
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Figure 2.10: Difference in electron probability density injected from left-hand contact
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∂nα(x)

∂φ
=

1

8π2β

(
2m

h̄3

)3/2 ∫ ∞
0

dE ′|ψαk⊥(x)|2 1√
E ′

∂

∂φ

(
ln
(

1 + e(µα−E′+φ−E′D)β
))

=
1

8π2β

(
2m

h̄3

)3/2 ∫ ∞
0

dE ′|ψαk⊥(x)|2 1√
E ′

βe(µα−E′+φ−E′D)β

1 + e(µα−E′+φ−E′D)β

=
m

πh̄2

∫ ∞
−∞

dk⊥
|ψαk⊥(x)|2

1 + e(EαD,⊥−µα)β
, (2.39)

where in the last step the integral was converted back into k-space after changing the

integration variable back to E⊥. Similarly for the quasi-bound states,

∂nB(x)

∂φ
=

m

πh̄2

∑
n

|ψB
n (x)|2

1 + e(µL−EB
n )β

. (2.40)

The wave functions in (2.39) and (2.40) are valid only for the potential φ(m). Once

the potential has been updated it is necessary to solve the Schrödinger equation for the

new electron wave functions before again solving the Poisson equation. Additionally,
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as the derivatives have been approximated strong under-relaxation (w ≤ 0.1) is neces-

sary to avoid oscillations and divergent behavior. Finding the self-consistent potential

with this algorithm can require on the order of one hundred iterations, which is unac-

ceptable in an optimization procedure for which thousands of self-consistent potentials

must be calculated. Fortunately, a scheme has been developed that dramatically speeds

convergence to the self-consistent potential.

2.5.2 Predictor-corrector scheme

The predictor-corrector scheme was developed by Trellakis et. al. [44] to address

the significant computational cost of the under-relaxation method. In this scheme,

first-order perturbation theory is used to find an approximate closed form expression

for the dependence of the charge density on the potential. Using this expression, the

Schrödinger and Poisson equations become partially decoupled by predicting the new

charge density without an additional solve of the Schrödinger equation. This allows for

multiple solves of the Poisson equation within an inner loop up to a relative change in

potential less than εP, and a full step to be taken at the end of each iteration of the outer

loop. Once φ(m+1) has been found, the Schrödinger equation is solved to correct the

predicted n, allowing for the next iterative solution of the Poisson equation. Using this

scheme the solver rapidly converges to the self-consistent potential, often requiring only

two to five iterations, depending on desired accuracy.

For a full derivation of the following equations the reader is referred to Ref. [44],

as I will only repeat their final results here. Using first-order perturbation theory the

approximate expression for the charge density injected from the contacts is
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nα(x, φ) =
m

πh̄2β

∫ ∞
0

dk⊥|ψαk⊥(x)|2 ln
(

1 + e(µα−EαD,⊥−(φ(`)(x)−φ(0)(x)))β
)
, (2.41)

nB(x, φ) =
m

πh̄2β

∑
n

|ψB
n (x)|2 ln

(
1 + e(µL−EB

n−(φ(`)(x)−φ(0)(x)))β
)
, (2.42)

and for the Jacobian,

∂nα(x, φ)

∂φ
=

m

πh̄2

∫ ∞
0

dk⊥
|ψαk⊥(x)|2

1 + e(EαD,⊥−µα−(φ(`)(x)−φ(0)(x)))β
, (2.43)

∂nB(x, φ)

∂φ
=

m

πh̄2

∑
n

|ψB
n (x)|2

1 + e(EB
n−µL−(φ(`)(x)−φ(0)(x)))β

, (2.44)

where ` indexes the inner loop.

2.6 Measures taken to enhance stability and accuracy

In the following subsections I will discuss additional features intended to improve both

the stability of the solver and accuracy of, ultimately, the calculated current density

flowing through the self-consistent potential. At the end of this section flow charts

showing algorithms for the self-consistent potential solver and its driver are shown Fig.

2.11 and Fig. 2.12, respectively.

2.6.1 Sufficient sampling of electron transmission resonances

In devices featuring resonances with small line-widths relative to the spacing of the

sampled values of k⊥, it is critical that the full width of the resonance be sampled.

Otherwise, the significant charge density stored in the resonance depends on only a few

sample points. As the self-consistent potential reacts to this stored charge and shifts the
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energy of the resonance, large variations in stored charge are possible and oscillations

likely.

To prevent this I have added the capability of dynamically altering the sampled val-

ues of k⊥ to respond to the presence of strong resonances. Each iteration the trans-

mission spectrum is analyzed for peaks. If less than ten k⊥ samples fall within the

full-width-at-half-maximum (Γ) of the peak, 60 additional samples, linearly spaced in

k-space, are inserted into the k⊥ vector between ±3× Γ
2
.

2.6.2 Energy vector for current density calculation

If the dynamically altered k⊥ vector is used for current density calculations, inconsis-

tencies may occur. Additionally, it must be ensured that the spacing of the E⊥ samples

used for the current density calculation be smaller than that of Vbias . Otherwise, changes

in Vbias may not open additional energy samples for current flow, resulting in a step-like

current-voltage characteristic with steps occurring each time a new energy sample is

opened for current flow. Therefore the current density calculation uses a separate, static

energy vector from that used for the calculation of the charge density.

2.6.3 Accuracy of quasi-bound state energies

The quasi-bound states contain the majority of charge responsible for band bending,

and therefore their spatial distribution is a dominant factor in the shape of the self-

consistent potential. If a change in Vbias is on the order of the energy sample spacing, it is

possible for the quasi-bound state to become stuck at a single energy sample for multiple

values of Vbias . As a consequence, ripple-like features occur in the current-voltage

characteristic. The current varies smoothly as a function of Vbias for several samples

until the quasi-bound state shifts to a new energy sample, causing a discontinuity in the

current-voltage characteristic.
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The primary concern in addressing this issue is speed of the algorithm. While a fine

energy spacing over the extent of the accumulation region will suffice, often only a single

quasi-bound state exists within the range of Vbias considered in Chapter 3. Therefore I

have separated the quasi-bound state search into two parts. The first is a coarse scale

search over the entire energy range of the accumulation region. The second is a fine

scale search about each of the bound states found in the first search.

2.6.4 Spatial requirements for slowly decaying quasi-bound states

While it is desirable to use the smallest domain size possible, quasi-bound states having

energies near zero eV may feature spatial decay constants in the hundreds of nanome-

ters. If the charge density of a quasi-bound state is too large at the edge of the simulation

domain, physical requirements for zero electric field cannot be enforced. Additional

space is required to allow the quasi-bound state charge density to decay to a value suf-

ficiently small compared to ND. I have chosen 10−4 × ND as this threshold. When

the quasi-bound state charge density at the contact exceeds this threshold, the additional

length required meet this condition is estimated, and the self-consistent solver restarts

with the additional space added to the left-hand side of the domain. A maximum of 400

nm of additional space is allowed. If additional space is required an error is generated

and the self-consistent solver returns to the driver.

2.6.5 Dynamic slowing of the solver

Success of Newton’s method depends critically upon step size, w. Choosing a value for

w must weigh trade-offs between simulation time and stability. The predictor-corrector

scheme is excellent in this regard, remaining stable under most conditions with w = 1.

However, the self-consistent potential can diverge if any assumptions break down.
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Most often this occurs when quasi-bound states are added or removed between iter-

ations. Changes in potential as small as 1 meV can cause these oscillations. Supposing

that the quasi-bound state charge density has a maximum of n = 2×1018 cm−3, the rate

of change of the charge density is ∂n
∂φ

= 2 × 1021 cm−3/eV! Under these conditions the

self-consistent potential must be approached more slowly.

I have implemented algorithms that will slow the solver any time the relative error in

current density, Jrel, increases compared to the previous iteration. The solver is always

started using the predictor-corrector scheme. If available the initial guess for the poten-

tial is a previous self-consistent potential scaled to Vbias , otherwise the depletion approx-

imation is used. The predictor-corrector scheme is referred to in the following and in

Fig. 2.11 as mode 0. If Jrel increases while in mode 0, the previously calculated poten-

tial is ignored and solver switches to the single iteration solution method for the Poisson

equation outlined in section 2.5, referred to in the following and in Fig. 2.11 as mode

1. When this switch occurs, the under-relaxation parameter is set to w = 0.2, which

from experience is a slightly aggressive value. From this point on any increase in Jrel

will cause the latest potential to be discarded and the under-relaxation parameter to be

reduced by half until Jrel converges (whether or not the potential has converged in this

case is discussed in section 2.6.6).

It is still possible for self-consistent potential to terminate without convergence. The

first time this occurs the self-consistent solver is restarted in mode 1. Failure in this

attempt will cause the self-consistent solver to restart in mode 1 with the depletion

approximation used as the initial potential. If the solver cannot converge to the self-

consistent potential in this attempt, the depletion approximation is used for calculation

of the current density.
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2.6.6 Absolute error check

Since the solver is able to dynamically increase the amount of under-relaxation, it is

possible for Jrel to converge based solely on the small step size that has been taken. Thus,

it is necessary to have a measure of the absolute error to ensure that the potential has

also converged. The Poisson solver provides such a metric in the calculated change in

potential, δφ. The magnitude of δφ is related to the absolute error in the Poisson equation

given φ(m) and n(m). If the potential is in fact converging, then near convergence the

Poisson equation will generate changes in the potential that are small, typically on the

order of 10−5 eV. Therefore once Jrel has converged, the solver checks that the maximum

value of δφ from the last solution of the Poisson equation is less than 10−2 eV. If this is

not the case, an error is generated and the solver returns to the driver.

2.7 Conclusion and future work

The self-consistent potential solver described in this chapter works well with doping

concentrations 1018 cm−3≤ n ≤ 1020 cm−3, temperatures from T = 5 K to greater than

T = 500 K, and for Vbias ≤ 0.5 V. The weakest approximation is that of an equilibrium

concentration of electrons in quasi-bound states. Like the contacts, without a proper

scattering model these states cannot react to injected charge density or strength of the

confining potential.

Future work may include, at least phenomenologically, scattering in the contacts

and into quasi-bound states. One common method is to broaden the energy of the quasi-

bound states to emulate the finite lifetime of the states. This broadening may be done

somewhat self-consistently by evaluating tunneling rate through the confining potential.

It may be also possible to create a model that, like the model of Chapter 4, links the

electronic energy levels in a unitary fashion within the propagation matrix method. Such
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an approach could allow electron flux to scatter between energy levels, changing the

non-equilibrium distribution. However, the model would still be one-dimensional as the

propagation matrix method assumes no change in k‖ upon scattering at an interface.
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Chapter 3

Optimal electronic device design

3.1 AlξGa1−ξAs material system

As a prototype material system the AlξGa1−ξAs material system is chosen for optimiza-

tion of semiconductor heterostructure diodes. An advantage of this material system is

the near lattice match between AlAs and GaAs, having lattice constants differing by only

0.14%. This allows one to ignore effects of strain in the physical model. Additionally,

this material has been heavily studied and crystals may be grown with near atomic-layer

accuracy via methods such as molecular beam epitaxy and atomic layer deposition. At

temperature T = 300 K one monolayer in [100]-oriented GaAs is δ = 0.2827 nm thick,

the conduction band offset between AlAs and GaAs is 1.04 eV [46], and the relative

permittivity is assumed to vary as εr = 13.2− 3.1× ξ [1].

Band structures for GaAs and AlAs calculated using an sp3s∗ model [45] are shown

in Fig. 3.1. In the devices considered electrons will be injected from GaAs contacts,

featuring a direct band gap. The active region of these devices will feature heterostruc-

ture layers of varying Al concentration, ξ. This parameter control the conduction band

offset between each heterostructure layer and the GaAs contact as U = 0.8355 × ξ for

ξ < 0.42 (U < 0.35 eV). Al alloy concentrations ξ > 0.42 feature the indirect band gap

characteristic of AlAs. To avoid the need to account for scattering into X-band minima,

only Al alloy concentrations ξ < 0.42 are considered.

46



Wave vector, k (m-1) 

En
er

gy
, E

 (e
V

) 

-1 

-2 

0 

1 

2 

3 

4 

Γ X L 〈111〉 〈100〉 

Eg=1.42 eV 

Conduction 
band 

0.48 eV 

(a) GaAs 

Wave vector, k (m-1) 

En
er

gy
, E

 (e
V

) 
-2 

0 

1 

2 

3 

4 

Γ X L 〈111〉 〈100〉 

Eg=2.93 eV 

Conduction 
band 

(b) AlAs 

-1 

Figure 3.1: Band structure for (a) GaAs and (b) AlAs calculated using an sp3s∗ model
[45]. Band gap energies, Eg, are indicated.

For simplicity a conduction band effective electron mass m = 0.07 × m0 is used

in all heterostructure layers, where m0 is the bare electron mass. The simple coher-

ent transport model captures the essential physics of electron transport in nanoscale

AlξGa1−ξAs heterostructures and is capable of accurately predicting qualitative features

of the current-voltage characteristic. Complexities that can be added to the physical

model such as material-dependent effective mass and band non-parabolicities [3] as well

as scattering mechanisms [37] will produce mostly quantitative changes in calculated

current. While these changes may result in optimized potential profiles that differ from

those obtained, the achievable degree of optimality should not be significantly changed.

Therefore, for a proof-of-principle demonstration these additional complexities provide

little additional insight and are not included in the physical model.
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3.2 Optimal design of semiconductor heterostructure

devices

Consider the jth layer of a layered AlξGa1−ξAs heterostructure device. In the physical

model this layer may control electron transport through both its thickness, Lj , and its

conduction band offset, Uj . These design parameters for all heterostructure layers may

be grouped into the vector p, containing P elements. As a measure of the optimality of

a set of design parameters p, the cost function is defined as

C(p) =
ν∑
j=1

wj
(
Jobj(V

j
bias)− Jsim(V j

bias, p)
)2
, (3.1)

where wj is a weighting factor. This form of the cost function represents a least squares

measure of the difference between the simulated current density, Jsim, and the objective

function, Jobj. It has been chosen to guarantee a continuous derivative for local parabolic

minima, necessary for gradient-based methods of optimization.

Because more optimal designs are associated with lower cost, the optimal design

problem is formulated as a minimization problem,

min
p
C, (3.2)

subject to the forward solve

Jsim(V j
bias) =

em

2π2h̄3β

R∑
r=1

T (V j
bias, E

r) ln

(
1 + e(µ−Er)β

1 + e(µ−Er−V jbias)β

)
dE, (3.3)

T (V j
bias, E

r) =
1∣∣a0(V j

bias, E
r)
∣∣2 , (3.4)
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where a discrete sum necessary for numerical evaluation has been shown explicitly. In

this expression j indexes Vbias , r indexes energy, and dE is the separation between

energy samples. The design parameters are subject to the constraints

0 ≤ Uj ≤ 0.35 eV, (3.5)

Lj = n× δ, n ∈ N+. (3.6)

Sufficient conditions for a locally optimal device configuration, p∗, are

∇pC|p∗ = 0, (3.7)

and

Hp(C)|p∗ > 0, (3.8)

if no constraints are active, where Hp is the Hessian operator which is a matrix of second

order partial derivatives with respect to the design parameters p. Active constraints

occur when a design parameter approaches one of its constraints, so that the device

configuration is at the edge of the feasible solution space. When this occurs, variations

of these conditions can be satisfied.

If the gradient ∇pC is known, the cost function may be minimized efficiently using

Newton’s method, for which successive approximations for (3.7) are

pn+1 = pn +
∇pC

HpC
. (3.9)
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The fmincon program from the optimization toolbox in MATLAB is used to implement

the Newton method. If any constraints are active the optimization algorithm solves a

quadratic programming problem to determine the search direction.

The Newton method requires evaluation of the gradient ∇pC. Although ∇pC may

be evaluated using a finite difference approximation, this method is computationally

expensive, requiring P additional forward solves. Since each optimization will likely

require several hundred forward solves and the calculation of the self-consistent poten-

tial alone is computationally costly, efficient calculation of the gradient is necessary for

the local optimum to be found in a reasonable amount of time. The adjoint method

provides an efficient method for evaluating∇pC.

3.2.1 The adjoint method

The forward solve may be cast in terms of a linear system

L(p) · x = b, (3.10)

Jsim(V j
bias, p) = Wj(x), (3.11)

where matrix L(p) contains the device physics, vector x contains transmitted wave func-

tion amplitudes, and vector b contains boundary conditions.

The P -dimensional gradient of C may be evaluated with the chain rule. For the `th

design parameter, the derivative of C is

∂p`C = −
ν∑
j=1

2wj
(
Jobj(V

j
bias)− Jsim(V j

bias, p)
)
∂xWj(x)∂p`x. (3.12)

50



While ∂xWj(x) may be computed explicitly, ∂p`x can be difficult to evaluate directly.

The propagation matrix method of the physical model calculates x by multiplying

together a series of matrices. Evaluating the derivative of this product may be computa-

tionally expensive. This problem may be circumvented by defining an adjoint equation

LT (p) · h =
ν∑
j=1

2wj
(
Jobj(V

j
bias)− Jsim(V j

bias, p)
)
∂xW

T
j (x), (3.13)

solved in the same manner as the forward solve. Using the derivative of the forward

solve

(∂p`L(p)) · x+ L(p) · (∂p`x) = ∂p`b. (3.14)

and substituting (3.14) and (3.13) into (3.12), the derivative of C is

∂p`C = hT · (∂p`L(p) · x− ∂p`b) . (3.15)

The adjoint method calculates a gradient efficiently because, rather than computing

P additional forward solves for a finite differences method evaluation of the adjoint

variable h requires the same computational cost as only one forward solve. x is calcu-

lated during the forward solve and the derivatives ∂p`L(p) are simple functions that are

determined analytically in the next section. Thus, for the additional computational cost

of a single forward solve the gradient of C with respect to all P design parameters may

be computed.

3.2.2 Derivative of the cost function

For the physical model, application of the adjoint method yields a derivative [26, 24]
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∂C

∂p`
= Re

[
ν∑
j=1

R∑
r=1

N∑
i=0

(βj,ri+1)T
∂pj,ri
∂p`

αj,ri+1

]
, (3.16)

where βj,ri+1 is the adjoint variable calculated by solving

βj,ri+1 =(pj,ri−1)Tβj,ri

+ 4δi,0wj

(
J jobj −

R∑
r′=1

cj,r
′ 1

|aj,r′0 |2

)
cj,r

1

|aj,r′0 |4

 (aj,r′0

)∗
0

 .
The initial condition for βj,ri+1 is

βj,r0 =

 0

0

 , (3.17)

and in (3.16)

αj,ri =

 aj,ri

bj,ri

 . (3.18)

In these equations i indexes position, r indexes energy, and j indexes Vbias . Evalu-

ation of the derivatives ∂pj
∂L`

and ∂pj
∂U`

ideally include changes in the self-consistent poten-

tial with respect to changes in the design parameters. However, this derivative cannot

be calculated explicitly. Since the optimized potential profiles feature only broad elec-

tron transmission resonances the charge density, and hence the self-consistent potential,

should not be sensitive to small changes in design parameters. Ignoring the effect should

at worst slow convergence of the optimization algorithm.

The derivative ∂pj
∂L`

is considered first. Perturbing a heterostructure layer thickness

will perturb only the complex exponential terms in the propagation matrix. Therefore,
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∂pj
∂L`

= i
kj
2

 −
(

1 +
kj+1

kj

)
e−ikjLj

(
1− kj+1

kj

)
eikjLj

−
(

1− kj+1

kj

)
e−ikjLj

(
1 +

kj+1

kj

)
eikjLj

 . (3.19)

The derivative ∂pj
∂U`

is made somewhat more complicated by the fact that either kj or

kj+1, or both, in pj may depend upon U`. First noting that

∂kj
∂U`

=

√
2m

h̄

∂

∂Uj

√
E − Uj = − m

2h̄2

1

kj
, (3.20)

the derivatives are

∂pj−1

∂U`
=

m

2h̄2kj−1kj

 −e−ikjLj eikjLj

e−ikjLj −eikjLj

 , (3.21)

∂pj
∂U`

=
m

2h̄2k2
j


(
iLj (kj + kj+1) +

kj+1

kj

)
e−ikjLj

(
−iLj (kj − kj+1)− kj+1

kj

)
eikjLj(

iLj (kj − kj+1)− kj+1

kj

)
e−ikjLj

(
−iLj (kj + kj+1) +

kj+1

kj

)
eikjLj

 .
(3.22)

When both kj and kj+1 depend on Uj , the derivative is the sum of (3.21) and (3.22).

3.3 Extent and limit of control for linear objective

Because of the importance of Ohmic (linear) current-voltage behavior in analog and

mixed signal circuit design, the extent to which it is possible to achieve such behavior

in a tunnel diode with non-equilibrium electron transport through an active region just a

few nm thick is explored. Expected difficulty linearizing device behavior that, as shown

in the next section, generally exhibits nonlinear behavior should provide insight into
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physical mechanisms responsible for controlling the current-voltage characteristic and

be a suitable test for optimal design.

Mechanisms responsible for linear current-voltage behavior in optimally designed

tunnel diodes are different from those of conventional resistors and nano-wires. The

former relies on near-equilibrium electron transport and dissipative processes involving

the emission of phonons [49]. The latter relies on dimensional confinement and non-

equilibrium electron transport with no scattering giving a maximum electron conduc-

tance per spin of Gn = e2/2πh̄. In addition, inability to create low impedance contacts

to nanowires has limited their utility and application to electronic devices. Deposit-

ing metal contacts directly onto semiconductor nanowires effectively forms a Schottky-

barrier [25] and failure to lower the contact resistance of single-walled carbon nanotubes

below tens of kΩ has driven the research community to consider use of multiple-walled

and bundled nanotubes [35, 32].

The design of optimized tunnel diodes considered here do not suffer from these

difficulties. Elastic electron scattering from a precisely defined potential is used to con-

trol the current-voltage characteristic of the device. The work extends previous studies

of optimized electron transmission [39, 47] and current density [26] by self-consistently

solving the Schrödinger and Poisson equations to obtain the potential. In addition, phys-

ical mechanisms limiting feasibility of design are explored and it is shown how material

parameter choice impacts dynamic range.

3.3.1 The single-barrier heterostructure diode

In general, non-equilibrium electron transport in nano-scale devices results in a nonlin-

ear relation between current and voltage bias. As an example, consider the heterostruc-

ture tunnel diode shown in Fig. 3.2(a). The material consists of an undoped AlAs layer
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of thickness L0 grown between two GaAs contacts with n-type impurity concentration

ND = 1× 1018 cm−3.

Results of calculating the current-voltage characteristic of this device are shown in

Fig. 3.2. For small bias voltage |Vbias| < µ, increasing bias opens channels for current

flow. At temperature T = 300 K, the chemical potential in the model of the GaAs con-

tacts is µ = 38.9 meV. In this regime, electron transmission probability through the tun-

nel barrier is weakly dependent on Vbias and the current-voltage characteristic is quasi-

linear. Once |Vbias| > µ, the majority of current carrying states have been accessed. The

slope ∂J
∂Vbias

decreases as changing current is now caused primarily by Vbias lowering

the energy of the AlAs layer relative to the energy of conduction band electrons in the

cathode. This change in physical mechanisms controlling electron transport should be

difficult to linearize, providing a suitable test of achievable optimality.

The log scale plot of Fig. 3.2(c) shows that current exhibits an exponential depen-

dence in this regime, with current scaling exponentially with L0. Although a single

potential barrier can scale current, it does not offer significant control over the current-

voltage characteristic.

3.3.2 Chosen device structure for optimization

Control necessary to linearize the current-voltage characteristics shown in Fig. 3.2 may

be achieved by introducing AlξGa1−ξAs layers with varying composition. From pre-

vious optimization efforts, such as Fig. 1.2, it is observed that optimal designs favor

a large potential barrier near the cathode to set the scale for current flow. Therefore a

device structure is chosen consisting of one AlAs layer of thickness L0 followed by N

AlξGa1−ξAs layers, each of thickness Lδ = 4× δ. Total thickness of the active region is

L = L0 +NLδ.

55



-0.4 

Position, x (nm) 

1 

-25 
Po

te
nt

ia
l e

ne
rg

y,
 U

(x
) (

eV
) 

0.6 

15 10 0 5 

0.2 

0.8 

-5 

0 

0.4 

(a) 

20 

-0.2 

25 -10 -15 -20 

GaAs 
ND = 1018 cm-3 

GaAs 
ND = 1018 cm-3 

AlAs 
undoped 

L0 

L=20

L=25

L=30

L=35

Voltage bias, Vbias (V) 

-0.5 0.2 0.5 

C
ur

re
nt

 d
en

si
ty

, J
 (A

/c
m

2 )
 

0.4 
-2.0 

2.0 

-0.5 

0 

0.1 0.3 

1.0 

1.5 

-1.0 

L0 = 20×δ 
L0 = 25×δ 
L0 = 30×δ 
L0 = 35×δ 

× 19 
× 310 

× 4000 

0 -0.1 -0.2 -0.3 -0.4 

× 1 

0.5 

-1.5 

Voltage bias, Vbias (V) 

0 0.2 0.5 

C
ur

re
nt

 d
en

si
ty

, l
og

10
(J

) (
A

/c
m

2 )
 

0.4 
-7 

1 

-3 

-6 

0.1 0.3 

(c) 

-1 

0 

-4 

-2 

-5 

L0 = 9.9 nm (35 monolayers) 

L0 = 5.7 nm (20 monolayers) 

L0 = 7.1 nm (25 monolayers) 

L0 = 8.5 nm (30 monolayers) 

Figure 3.2: (a) Tunnel-diode consisting of an undoped AlAs layer of length L0 between
two GaAs contacts subject to an applied voltage bias Vbias = 0.25 V. Also shown are
current-voltage characteristics through the device of part (a) in (b) linear and (c) log
scales for several values of L0. Current is exponential for |Vbias| > µ (µ = 38.9 meV)
and quasi-linear for |Vbias| < µ. Simulation parameters are electron effective mass m =
0.07 ×m0, temperature T = 300 K, and n-type doping concentration ND = 1 × 1018

cm−3.

An example is shown in Fig. 3.3, where conduction band offsets of the AlξGa1−ξAs

layers have been chosen randomly. Voltage bias is restricted to the polarity shown in

Fig. 3.2(a). In this orientation the AlAs layer is the primary current limiter, chosen for

its ability to scale the current by orders of magnitude with a change in L0 of only a

few monolayers. The following series of AlξGa1−ξAs layers of fixed thickness fine-tune
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Figure 3.3: Randomly configured AlξGa1−ξAs heterostructure diode displaying features
selected for the optimized potential profiles. An AlAs layer having a thickness L0 is
the primary current limiter. The following series of AlξGa1−ξAs layers fine-tune the
current-voltage characteristic, with the number of AlξGa1−ξAs layers, N , used as an
auxiliary parameter to set the length of the device. The AlξGa1−ξAs layers have a fixed
thickness Lδ = 4× δ and L0 = n× δ, where n is a positive integer and δ = 0.2827 nm
is one monolayer of AlξGa1−ξAs . Total thickness of the active region is L = L0 +NLδ.

features in the current to match the objective as closely as possible. The GaAs contacts

have an n-type doping concentration ND = 1× 1018 cm−3.

3.3.3 Optimization for linear objective

To reduce simulation time, each optimization consists of two sequential optimizations.

The first optimization samples 5 linearly spaced Vbias points to establish an estimate of

the optimal profile. The result of this optimization is then passed to the second opti-

mization which samples 25 linearly spaced points Vbias points.

The optimization algorithm treats L0 as a continuous quantity. To enforce its discrete

nature, the the physical model rounds L0 to the nearest integer multiple of δ. Once L0

has changed sufficiently it is rounded to a new value, causing a large change in the
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current density. The optimization then effectively restarts, as the set of AlξGa1−ξAs

conduction band offsets {Uj} were optimized for the previous value of L0. To prevent

this from occurring in the slower of the two optimizations, L0 is fixed during the second

optimization.

The linear objective function is defined as Jobj = Vbias/r, where r defines the slope

of the objective function with units of Ω× µm2. For a device of cross-sectional area A

characterized by current density J = Vbias/r, the resistance is R = r/A. The optimiza-

tion is limited to 0 ≤ Vbias ≤ 0.5 V, and auxiliary parameters for optimization are r and

the number of AlξGa1−ξAs layers N . Initial device configurations consist of a random

set {Uj} and an initial guess for L0 that ensures J(Vbias = 0.5 V) is of the same order

of magnitude as the objective function.

3.3.4 Results for linear objective function

Optimizations were completed using N = 5, 7, 10, 12, 15, and 17 layers of AlξGa1−ξAs

and values of r ranging from r = 10 kΩ × µm2 to r = 100 MΩ × µm2 by factors of

10. Designs for r = 1 kΩ × µm2 also yielded linear behavior, but the 2-3 monolayer

thickness of the AlAs layer in the designs violated the assumption of an equilibrium

distribution of electrons in accumulation region quasi-bound states [11, 10]. Resistances

equal to or less than this value may be accessed by increasing ND.

Fig. 3.4 shows current-voltage characteristics of the most optimal design for each r.

The currents have been scaled such that the objective functions are equal and the curves

overlap. It can be seen that device designs spanning 4 orders of magnitude in r display

essentially linear behavior over the optimization range.

The potential profile and relative error in r for an optimally designed device featuring

N = 12 AlξGa1−ξAs layers and r = 1 Ω×µm2is shown in Fig. 3.5. The linearity of this

design is quantified by calculating total harmonic distortion (THD). A sinusoidal voltage
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Figure 3.5: (a) Optimized potential profile for a diode characterized by r = 1 MΩ×µm2

and N = 12. (b) Error in differential resistance relative to r. Simulation parameters are
electron effective mass m = 0.07×m0, temperature T = 300 K, doping concentration
ND = 1× 1018 cm−3 .

of frequency ω0 having constant offset voltage Vbias = 0.25 V and peak amplitude Vp

(Vpp = 2Vp) is applied to the diode, resulting in the distortion curves shown in Fig.

3.6. Suppression of the second harmonic for Vp ≤ 0.1 V results from odd symmetry

in the differential resistance about Vbias = 0.25 V. Excellent linearity is achieved, with

THD ≤ −65 dB for Vp ≤ 0.2 V indicating greater than 10 bit dynamic range for signals
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Figure 3.6: Spectral intensity and total harmonic distortion (THD) for optimized diode
shown in Fig. 3.5. The input voltage is a sinusoidal wave of frequency ω0 and amplitude
Vp with constant offset voltage Vbias = 0.25 V. Suppression of the second harmonic for
Vp ≤ 0.1 V results from odd symmetry in the differential resistance about Vbias = 0.25
V. Total harmonic distortion of less than -65 dB indicates greater than 10 bit dynamic
range.

Table 3.1: Deviation from objective, ∆, of the most optimal design for each N .

N 5 7 10 12 15 17
∆ -4.23 -5.09 -5.62 -5.58 -4.97 -4.72

up to Vpp = 0.4 V. Decreasing the relative error for convergence of the self-consistent

potential to εJ = 10−5 produced similar results, indicating the existence of limits to

achievable optimality for the system.

The device of Fig. 3.5 was achieved by weighting the cost function toward more

nonlinear regions of J . An initial result of optimization for auxiliary parameter combi-

nationN = 12 and r = 1 MΩ×µm2 featured a THD of -54 dB at Vp = 75 mV, resulting

from greater error in r for Vbias < 0.2 V than that shown in Fig. 3.5. The design was

further optimized using a weighting factor wj = 5 for 0.1 ≤ Vbias ≤ 0.25 V, wj = 2 for

0.25 < Vbias ≤ 0.4 V, and unity weighting elsewhere. This demonstrates that control

may be improved by applying greater weight to less controlled regions of J .

60



Number of AlξGa1-ξAs layers, N 

4 
D

ev
ia

tio
n 

fr
om

 o
bj

ec
tiv

e,
 ∆

 (d
B

) 
12 10 6 

-4 

16 

-5 

-1 

-6 
18 

-2 

-3 

8 14 

Figure 3.7: Deviation from objective as a function of the number of AlξGa1−ξAs layers,
N . The trend indicates that a natural value for auxiliary parameter N exists at N = 10.

To compare optimality independent of the magnitude of current, it is convenient to

define the deviation from the objective as

∆ = log10(1−R2
d), (3.23)

whereR2
d is the coefficient of determination between the objective and simulated current

density, constrained to 0 ≤ R2
d ≤ 1 with R2

d = 1 corresponding to Jsim = Jobj. The

logarithmic nature of this metric coupled with R2
d ≈ 1 for the designs make this a

sensitive measure of optimality. Presented in Table 3.1 is ∆ for the most optimal design

of each N . As indicated in Fig. 3.4, N = 10 and N = 12 were the most natural values

of auxiliary parameter N . The deviation from objective of the design of Fig. 3.5 is

∆ = −5.58.

Deviation from objective for all auxiliary parameter combinations is shown in Fig.

3.7 with respect to N . A clear trend in ∆ as a function of N may be seen, with N = 10

as the most natural auxiliary parameter. This trend indicates that physical mechanisms

related to device length limit the degree of achievable linearity.
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While the most optimal value for the auxiliary parameter is N = 10, the most linear

device has been shown to have N = 12. This results from optimization of the current

density effectively optimizing the average slope of the current-voltage characteristic.

To optimize for linearity the cost function would need to contain a ∂J
∂Vbias

term. This

form for the cost function was not chosen because it could result in linear regions in the

current-voltage characteristic that do not extrapolate to the origin (non-Ohmic behav-

ior). It is possible however to optimize the value of the current density and the slope

simultaneously. Weighting the optimization towards one of these quantities could allow

for additional control over device behavior.

3.3.5 Feasibility of design

Control over device behavior is accessible through manipulation of quantum mechanical

effects such as tunneling and resonant electron transmission. The extent to which these

features can be accessed by thermally distributed electrons in the electrodes and con-

trolled by the design parameters for the given range of Vbias and N determine feasibility

of a given design.

For example, optimal AlξGa1−ξAs region lengths ofNL0 ≈ 7−12 nm restrict access

to low-lying resonances (< µ) at small Vbias . Low-energy resonances are necessary for

control in the low bias regime, and access to these resonant states could be made avail-

able by including InξGa1−ξAs alloys to allow Uj ≤ 0 eV. Absence of these resonances

is apparent in Fig. 3.8, which shows the relative error in r for the optimal designs sorted

by N . It can be seen that in all designs negative error in r occurs as Vbias → 0 V and

error in r increases as Vbias decreases.

Naively, one might expect that longer devices, with more degrees of freedom and

access to additional resonances in the electron transmission spectrum, would have more

control and hence higher optimality. However, for large values of N this is not the case
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Figure 3.8: Relative error in differential resistance for (a) N = 7, (b) N = 10, (c) N =
12, and (d) N = 15 AlξGa1−ξAs layers. As device length increases, the number and
strength of the resonances increases, causing greater difficulty controlling the current-
voltage characteristic. Designs featuring N = 5 and N = 17 designs are not shown as
much of the error extends beyond the scale shown.

in part due to a reduced ability for Vbias to control resonances with a necessarily smaller

electric field.

As an analogy, consider reflections from the edges of the active region as a Fabry-

Perot resonator. Increasing the length of the device will change electron transmission

resonances by narrowing the linewidth and increasing peak-to-valley ratio. This effect

is seen in Fig. 3.8, which shows both increased number of oscillations and increased

strength of oscillations about the objective r as N increases. Scattering from the

AlξGa1−ξAs layers is not sufficient to smooth out these stronger resonances.

63



Position, x (nm) 

Po
te

nt
ia

l e
ne

rg
y,

 U
 (e

V
) 

0.6 

0.4 

0.8 

0.2 

0 
10 0 5 15 20 

1.0 

U(x)=0.25×e-(x-L0)/16 

L0=13×δ 

r = 1 MΩ×µm2 

(a) 

N = 7: U(x)=0.27×e-(x-L0)/13 

N = 10: U(x)=0.23×e-(x-L0)/17 

Objective

N = 7

N = 10

N = 12

Objective 
N = 7 
N = 10 
N = 12 

Voltage bias, Vbias (V) 

C
ur

re
nt

 d
en

si
ty

, J
 (A

/c
m

2 )
 

40 

20 

0 
0 0.3 0.1 0.2 0.4 0.5 

60 

r = 1 MΩ×µm2 

50 

30 

10 

(b) 

Figure 3.9: (a) Potential profile of device of Fig. 3.5 with exponential decaying potential
manually fit to the average potential energy of the AlξGa1−ξAs layers. Also shown are
fits used for the N = 7 and N = 10 designs of r = 1 MΩ×µm2. (b) Current calculated
using exponentially decaying potential profiles of part (a). Proximity of curves to the
objective is shows that the physical mechanism responsible for setting the rough features
in the current is electron tunneling. Potential well features added by the optimization
algorithm fine-tune the current. Simulation parameters are electron effective mass m =
0.07×m0, temperature T = 300 K, doping concentration ND = 1× 1018 cm−3 .

The potential profile of Fig. 3.5 shows decreasing average Uj along the device

length. This feature is common to many N = 7-12 optimized designs, and is chosen

to set the rough features of the current via electron tunneling. To show this, Fig. 3.9(a)

plots the device of Fig. 3.5 with the average conduction band offset manually fit to an

exponential decay. Equations for the exponentially decaying potentials of the N = 7

andN = 10 designs for r = 1 MΩ×µm2 are given, and current through these potentials

is shown in Fig. 3.9(b). Proximity of the curves to the objective shows that the physical

mechanism responsible for setting gross features of the current-voltage characteristic is

electron tunneling. Potential well features are added by the optimization algorithm to

form electron transmission resonances that further linearize and fine-tune this current.
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3.3.6 Sensitivity analysis

Sensitivity to errors in AlξGa1−ξAs layer thickness is shown in Fig. 3.10(a). The Fig.

shows ∆ calculated in the presence of ±1 × δ or ±2 × δ perturbations in the thickness

of individual AlξGa1−ξAs layers for the design considered in Fig. 3.5. As shown in

Fig. 3.10(b), skew in the distribution is because electron scattering strength of the first

four layers from the AlAs layer are significant. These layers are responsible for all

bin counts in which ∆ > −2. The third and fourth layers are most responsible for

formation of transmission resonances because they are located near a quarter of the

characteristic electron (Fermi) wavelength in the system. The two leftmost layers help

the AlAs potential barrier set the scale of the current.
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Figure 3.10: (a) Histogram showing sensitivity of the optimal design of Fig. 3.5 to
errors in AlξGa1−ξAs layer thickness by calculating ∆ with a single AlξGa1−ξAs layer
perturbed by±1× δ or±2× δ. (b) Data from part (a) plotted by AlξGa1−ξAs layer. The
inset shows the potential profile for the device simulated, indicating the AlξGa1−ξAs
layer numbers. Simulation parameters are electron effective mass m = 0.07 × m0,
temperature T = 300 K, doping concentration ND = 1× 1018 cm−3 .

Sensitivity to alloy fluctuations and errors in Al concentration are simulated by per-

turbing Uj of all AlξGa1−ξAs layers by a random potential energy uniformly distributed

within ±3 meV. A histogram of 200 of these simulations for the design considered in

65



Fig. 3.5 is shown in Fig. 3.11. Skew of this distribution towards smaller ∆ may be a

result of the strongest scattering occurring in only four of the twelve AlξGa1−ξAs layers.
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Figure 3.11: Histogram showing sensitivity of optimal design to alloy fluctuations and
error in Al alloy concentration. In each simulation all AlξGa1−ξAs layers were per-
turbed by a random potential energy uniformly distributed between±3 meV. Simulation
parameters are electron effective mass m = 0.07×m0, temperature T = 300 K, doping
concentration ND = 1× 1018 cm−3 .

Since the AlAs layer is the primary current limiter, the optimized design displays

enhanced sensitivity to errors in L0 thickness. Current through the design of Fig. 3.5

is scaled roughly by a factor of two for each single monolayer change in L0 between

±2×δ. Approximately linear behavior is preserved however, with a maximum deviation

from objective of ∆ = −2.65 relative to a linear fit.

Changes in the Fermi-Dirac distribution with temperature will alter the current-

voltage characteristic of the tunnel diode. Linearity of the current-voltage characteristic

of the design in Fig. 3.5 as a function of temperature is evaluated by computing the

deviation from objective with respect to a linear fit forced through the origin. Approx-

imately linear current-voltage behavior over the temperature range 250 K≤ T ≤350

K is obtained with a maximum deviation from objective ∆ = −2.95 at temperature

T = 350 K. Variation of r over this temperature range is exponential with approxi-

mately r(T ) = (3.21 MΩ× µm2)× exp(−T/257.3).
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3.4 Application of customized, optimally designed diode

in an RF switching mixer

The capabilities of electronic circuits are constrained by the limited set of unique elec-

tronic components available. A circuit designer attempts to find an optimal combination

of available components that yields the point in the feasible solution space closest to

the desired behavior. When some components are not ideally suited to an application,

additional circuitry is necessary to correct or mitigate any undesirable behaviors.

To enhance the design of electronic circuits I propose a design methodology where,

in addition to the circuit topology, circuit designers have access to fabrication processes

and are able to create semiconductor devices that are customized for specific applica-

tions. Nano-scale electronic devices operating in a non-equilibrium electron transport

regime can access a wide range of current-voltage characteristics by utilizing quantum

phenomena such as tunneling and resonant electron transmission. The feasibility of this

approach is made possible by availability of atomically precise crystal growth methods

such as molecular beam epitaxy.

The large number of degrees of freedom available in material choice coupled with

the complexity of non-equilibrium electron transport makes an ad−hoc design approach

difficult. To overcome these difficulties optimal design methods provide an effective and

efficient approach to device design. In the following, a semiconductor heterostructure

tunnel diode will be presented that has been customized for use in an RF mixer to reduce

spurious mixing harmonics.

Inexpensive compute resources and direct access to semiconductor fabrication pro-

cesses presents opportunities for device and circuit co-design. This approach is illus-

trated, in which device physics and circuit function are treated on an equal footing, by

considering design of a RF mixer.
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RS/2

VRFcos( RFt)

VLOcos( LOt) RL

+
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-
RS/2

Figure 3.12: Circuit diagram of full-wave rectifier which may be used as a switching
mixer to mix RF and local oscillator (LO) signals. The output signal, Vout, is taken
across the load resistance, RL, and the resistance of the source is RS.

3.4.1 Ideal square-law mixer

In an RF receiver, an RF input signal of amplitude VRF and frequency ωRF = 2πfRF is

mixed with a local oscillator (LO) signal of amplitude VLO and frequency ωLO = 2πfLO

to extract a desired signal from a carrier. The LO is tuned to select a desired intermediate

frequency (IF) of amplitude VIF and frequency ωIF = |ωLO−ωRF|. A common method of

accomplishing this mixing is by using the LO signal to switch the phase of the RF signal

[21]. A full-wave rectifier similar to that shown in Fig. 3.12 may be used, using either

diodes as shown or transistors as switching devices. To illustrate the design concept

the architecture of Fig. 3.12 is adopted. In the Fig. the series resistance of the voltage

source is RS and the output signal, Vout, is taken across the load resistance, RL.

The ideal output of the switching mixer is Vout(t) = RL

RS+RL
|Vs(t)|, where Vs(t) =

VLO sin(ωLOt) + VRF sin(ωRFt) is the total source voltage. Typically the received RF

signal is weak, requiring strong LO to drive the diodes. If VLO � VRF,

Vout(t) ≈
RL

RS +RL

(VLO sin(ωLOt)sgn(sin(ωLOt))

+ VRF sin(ωRFt)sgn(sin(ωLOt))).

(3.24)
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Mixing of RF and LO signals occurs through the second term in this expression.

Expanding the sign function in terms of its Fourier series,

sgn(sin(ωLOt)) =
4

π

∞∑
n=0

1

2n+ 1
sin ((2n+ 1)ωLOt) , (3.25)

shows that an infinite set of harmonics are introduced into the output of the mixer. Pres-

ence of high-order harmonics will require filtering of the output signal.

The n = 0 term in (3.25) mixes the fundamental LO frequency with fRF. Setting

RS = RL for maximum power transfer, the mixing term producing the IF is

1

2

4

π
VRF sin(ωLOt) sin(ωRFt), (3.26)

In this expression the 1
2

is due to voltage division, the IF voltage is

VIF(t) =
VRF

π
cos ((ωLO − ωRF)t) , (3.27)

and power gain of approximately -10 dB is independent of VLO.

The spectral intensity of the switching mixer output voltage, assuming ideal switch-

ing, is shown in Fig. 3.13. Parasitics are ignored in this proof-of-principle calcula-

tion, so that although frequencies are assigned the response is independent of frequency.

Assuming ideal switching ignores finite rise-times which will be present in any physical

system. Finite rise-times may be modeled as attenuation of high-frequency components

of an ideal square-wave produced by ideal switching. Since the low frequency compo-

nents of a square-wave produce the majority of power in the IF, finite rise-time effects

should not significantly impact the mixer voltage gain provided the 10% to 90% rise-

time is less than 350 ps/fLO(GHz). Simulations of the switching mixer with a 350 ps

rise-time show a decrease in the IF power of less than 0.5 dB.
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Figure 3.13: Spectral intensity of Vout of the switching mixer shown in Fig. 3.12 sim-
ulated using LTSPICE. Although the mixing has been accomplished, many spurious
harmonics are produced. The IF output intensity is -40 dBm and the intensity at fre-
quency f = 2fIF is -82 dBm. Simulation parameters are LO power PLO = 0 dBm
(-10 dBV) and frequency fLO = 1 GHz, RF power PRF = −30 dBm (-40 dBV) and
frequency fRF = 900 MHz, source resistance RS = 50 Ω, and load resistance RL = 600
Ω.

The simulation of Fig. 3.13 uses LO power PLO = 0 dBm and frequency fLO = 1

GHz, RF power PRF = −30 dBm and frequency fRF = 900 MHz, source resistance

RS = 50 Ω, and load resistance RL = 50 Ω. In this configuration the power contained

in the IF is -40 dBm, for a simulated -10 dBm power gain. Harmonics produced include

even-order LO terms and harmonics at frequencies (2n + 1)fLO ± fRF, from (3.24), as

well as additional terms due to ideal mixing. The fourth order mixing term at frequency

f = 2fIF = 200 MHz, containing -82 dBm of power, can be difficult to filter using

conventional techniques, reducing the dynamic range of the switching mixer. Reduction

of this harmonic by an additional 48 dB without reducing the power gain of the mixing

term would require at least an 8 pole filter, whereas a receiver may contain fourth- or

fifth-order filters [15, 43].
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3.4.2 Improved performance of switching mixer with a customized

diode

It is desirable to reduce the amplitudes of the harmonics in order to reduce filtering

requirements necessary to achieve a fixed dynamic range. One way these harmonics

could be reduced is by squaring the output of the switching mixer. Consider the LO

output signal VLO sin(ωLOt)sgn (sin(ωLOt)). Fig. 3.14(a) shows the effects of squaring

this signal in the time-domain. The square-law transfer characteristic converts a rectified

sine wave into a pure sine wave by reshaping features in the signal, including smoothing

discontinuities in the derivative at Vbias = 0.

Fig. 3.14(b) shows the effects of squaring a sign function in the frequency domain.

The square wave signal of a sign function contains the frequency components given

in (3.25), and the power contained in these frequency components is shown as dashed

lines in the Fig. A square-law transfer characteristic mixes these frequencies such that

all harmonics are canceled and power is contained in only the zero frequency term.

Thus, a component designed to square the output of the mixer may be able to reduce

spurious harmonics in the output signal.

Squaring (3.24) and setting RS = RL,

Vout(t) =
1

4
V 2

LO sin2(ωLOt) +
1

2
VLOVRF cos(ωLOt) cos(ωRFt) +

1

4
V 2

RF sin2(ωRFt),

(3.28)

having the desired mixing term VIF(t) = 1
4
VLOVRF cos ((ωLO − ωRF)t), and only

second-order spurious harmonics. Additionally the IF amplitude now depends on VLO,

allowing for variable mixer gain.

To accomplish the squaring action a customized semiconductor heterostructure tun-

nel diode is designed and the diode placed in series with the load. For the voltage across

71



Vbias 

I 

I∝V 2
bias 

τLO/2 

τLO/2 

sin(ωLOt)sgn(sin(ωLOt)) 

sin2(ωLOt) 

(a) 

Rectified (lin)

Squared (lin)

Normalized frequency, f/fLO 

0 

Sp
ec

tra
l i

nt
en

si
ty

, S
( f

 ) 
(d

B
) 

-10 

5 4 3 

-20 

-5 

2 

-25 

-15 

-30 

1 

0 

-35 
6 

( )
( )

LO

2
LO

sgn sin( )

sgn sin( )

t

t

ω

ω  

(b) 

Figure 3.14: (a) Diagram showing a rectified sinusoidal input to a perfect square-law
device yields a squared sine wave. (b) Frequency components of sign function and
square of the sign function. The square-law transfer characteristics redistributes the
power from an infinite set of harmonics into only the DC component.

RL to be proportional to the square of the rectified signal, it is desired that the current

through the load equal

I(t) = α|Vs(t)|2, (3.29)

where α is a constant coefficient. Naively, one may expect a diode featuring a quadratic

current-voltage characteristic to satisfy (3.29). However, summing voltages around a

circuit with such a device yields

|Vs(t)| −
√
I(t)

α
− I(t) (RS +RL) = 0, (3.30)

resulting in current that is not proportional to |Vs(t)|2.

To satisfy (3.29) I will not use a conventional approach of designing a circuit in

which currently existing (and often active) circuit elements are configured to most

closely approximate the desired behavior. Rather, a single diode featuring a customized

current-voltage characteristic is designed to enable the switching mixer to satisfy (3.29).
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VLOcos( LOt) RL
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defined diode

+    -
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IRS/2

Figure 3.15: Circuit diagram of switching mixer utilizing diode characterized by a
parametrically defined current-voltage characteristic to eliminate unwanted harmonics.
Inputs to the circuit are RF signal of amplitude VRF and frequency ωRF and LO signal
of amplitude VLO and frequency ωLO. The source and load resistances are RS and RL,
respectively.

Suppose a diode can be designed that is capable of satisfying (3.29). Given this assump-

tion the voltage across the diode must be

Vd(t) = |Vs(t)| − α|Vs(t)|2(RS +RL). (3.31)

The required diode current-voltage characteristic is defined parametrically in terms of

(3.29) and (3.31).

Defining the current-voltage characteristic of a device parametrically to satisfy the

requirements of an application presents a new method of circuit design. In this method,

both circuit topology and device current-voltage characteristics are co-designed for a

specific application. This approach is made feasible by efficient design of heterostruc-

ture tunnel diodes using principles of optimal design.

Because the current-voltage characteristic is defined parametrically, the customized

diode is not guaranteed to be physically feasible. An example current-voltage character-

istic is shown in Fig. 3.16 for α = 6.9 mA/V2, source resistance RS = 50 Ω, and load

resistance RL = 50 Ω. It can be seen that the parametrically defined current-voltage
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Figure 3.16: Parametrically defined diode current-voltage characteristic given by the
equations in the Fig. A feasible design region is indicated bounded by maximum source
voltage, Vs,max, where the slope ∂I/∂Vd = ∞. Simulation parameters are α = 6.9
mA/V2, source resistance RS = 50 Ω, and load resistance RL = 50 Ω.

characteristic exhibits multi-valued current, which is potentially unstable, as well as an

infinite slope. However, over the range Vs < Vs,max a design is feasible, as indicated in

the Fig.

Designing a tunnel diode capable of achieving the large slope in the current-voltage

characteristic near Vs = Vs,max may be difficult. Designs that can capture this feature

may include physical effects such as sharp electron transmission resonances or may

operate at low temperatures to take advantage of a step-like Fermi-Dirac distribution.

For a proof-of-principle demonstration I have chosen to ease the design by optimizing

over a smaller range of source voltage at the expense of reducing the IF voltage gain

from the theoretical maximum.

Physical understanding of features in the parametrically defined current-voltage

characteristic can be gained by comparing operation of a switching mixer with and with-

out the parametrically defined diode. Figure 3.17 compares the current-voltage charac-

teristics of the two mixers with RS = 50 Ω, RL = 50 Ω, and α = 6.9 mA/V2. Because

a passive device is considered, the voltage across the diode and the current through the
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Figure 3.17: Comparison of current-voltage characteristics for series circuits with and
without the parametrically defined diode. Maximum source voltage, Vs,max, is defined
as the point at which the slope of the parabola matches that of the line. Parameters for
the Fig. are source resistance RS = 50 Ω, load resistance RL = 50 Ω, and α = 6.9
mA/V2, resulting in Vs,max = 0.73 V.

diode must have the same sign. Therefore the current through the mixer with the diode

must be less than that of the mixer without the diode, due to a finite, positive voltage

drop across the diode reducing the voltage across the resistors.

The parametrically defined diode can be modeled as a voltage dependent resistor,

labeled Rd. To satisfy (3.29), the net series resistance of mixer with the diode must be

R(Vs) =
1

αVs

= RD(Vs) +RS +RL. (3.32)

Comparing the slopes of the curves in Fig. 3.17, the diode increases the series resistance

for Vs ≤ Vs,max such thatR(Vs) > RS+RL. At voltage Vs,max, the two mixers have equal

resistances, requiring Rd = 0 Ω and necessitating the infinite slope in Fig. 3.16. As Vs

increases further, the resistance of the diode decreases to facilitate the quadratically

increasing current.

Vs,max is defined as the source voltage at which ∂I
∂Vd

=∞, or ∂Vd

∂Vs
= 0. Thus,
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Vs,max =
1

2α(RS +RL)
, (3.33)

resulting in a maximum voltage across the diode of

Vd,max =
1

4α(RS +RL)
. (3.34)

To determine the performance limits of a switching mixer utilizing a parametrically

defined diode, it is assumed that VRF � VLO such that VLO ≈ Vmax. Then substituting

the rectified source voltage

|Vs(t)| =VLO sin(ωLOt)sgn(sin(ωLOt))

+ VRF sin(ωRFt)sgn(sin(ωLOt)),
(3.35)

into (3.29), the IF current is

IRF =αVLOVRF cos ((ωLO − ωRF)t)

=
VRF

2(RS +RL)
cos ((ωLO − ωRF)t) ,

(3.36)

where the expression for (3.33) has been substituted for VLO. The average IF power

delivered to the load is

PIF =
1

2
I2

IFRL =
V 2

RF

8R2
t

RL =
1

16

V 2
RF

2RS

. (3.37)

Since PRF =
V 2

RF

2RS
, maximum power gain is -12 dB. Restricting the value of α, so that

the parametric diode operates with Vs < Vs,max, reduces the power gain.
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Figure 3.18: Spectral intensity of output of switching mixer containing parametrically
defined diode. The customized current-voltage characteristic of the ideal diode elimi-
nates all spurious harmonics above the second-order terms. The IF power is -49 dBm,
for a power gain of -19 dB. Simulation parameters are LO power PLO = 0 dBm and
frequency fLO = 1 GHz, RF power PRF = −30 dBm and frequency fRF = 900 MHz,
source resistance RS = 50 Ω, and load resistance RL = 50 Ω. The parametrically
defined diode is characterized by α = 6.9 mA/V2.

The output power of a switching mixer utilizing a parametrically defined diode sim-

ulated using LTSPICE is shown in Fig. 3.18. For comparison with Fig. 3.13, the

mixers in both Figs. use identical simulation parameters. It can be seen that the para-

metric diode has reduced spurious harmonics to only second-order harmonics and IF

power gain is -19 dB. With the ideal parametrically defined diode the lowest frequency

spurious harmonic occurs at frequency 2fRF, easing the requirements of the filter and

increasing dynamic range.

3.4.3 Voltage gain vs. power gain

With power gain of -19 dB, reduction of the harmonics has come at the expense of a 9

dB decrease in power gain. However, it is often the case that a mixer is followed by an

amplifier featuring a high input impedance. In this case the voltage gain of a mixer is a

more suitable figure of merit.
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For the two mixers considered, the voltage gain is

Av =
2

π

RL

RL +RS

, (3.38)

without the parametrically defined diode and

Av =
1

2
αVLORL, (3.39)

with the parametrically defined diode. Substituting Vs,max for VLO, the maximum voltage

gain with the parametrically defined diode is

Av,max =
1

2

RL

RL +RS

. (3.40)

In the following, it will be assumed that the load resistance is RL = 600 Ω, and

the input power is referred to source resistance of RS = 50 Ω. With these values the

switching mixer without a parametrically defined diode features a voltage gain of -4.6

dBV, the maximum voltage gain with the parametrically defined diode is -6.7 dBV. The

voltage gain of the mixer in Fig. 3.18 is -14.5 dBV.

3.4.4 Optimal design of parametrically defined diode

A heterostructure tunnel diode optimized for the current of the operating region of Fig.

3.16 is shown in Fig. 3.19. The diode features N = 10 AlξGa1−ξAs layers, AlAs

layer thickness L0 = 5 × δ, and n-type doping concentration n = 1 × 1019 cm−3. The

objective function is characterized by α = 1.06 mA/V2, and the cross-sectional area

A = 1.6 µm2 scales the current to that of Fig. 3.16. This value of α = 1.06 mA/V2 with

RL + RS = 650 Ω produces an equivalent current-voltage to that of α = 6.9 mA/V2

with RL +RS = 100 used previously.
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Figure 3.19: Simulated current density through a AlξGa1−ξAs heterostructure tunnel
barrier diode optimized for current shown in Fig. 3.16 given a cross-sectional area
of A = 1.6 µm2. Shown in the inset is the conduction band potential profile for the
device. Simulation parameters are temperature T = 300 K, electron effective mass
m = 0.07 × m0, n-type doping concentration n = 1 × 1019 cm−3. The objective
function is characterized by α = 1.06 mA/V2, and Rtot = 100 Ω.

Shown in the inset is the conduction band potential profile for the device. Phys-

ical features in this potential profile, such as the two potential wells, are selected by

the optimization algorithm to control propagating electrons. Electron transmission reso-

nances most significantly enhance electron transmission probability when their energies

are near those of occupied electron states. The majority of these occupied electron

states reside below the Fermi energy EF = 52 meV. The wider potential well at position

x = 10 nm will feature lower energy resonances than those of the narrower potential

well at position x = 3 nm. Thus, as Vd lowers the potential of the right-hand contact, the

lower energy resonances of the wider potential well will be pulled through the occupied

electron states first. The resonances control the increase of current at low bias. The

resonances of the narrower potential are pulled through the occupied electron states at

higher Vd, helping increase the current at a faster rate.
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Figure 3.20: (a) Spectral intensity of output of switching mixer using optimized para-
metrically defined diode. The IF voltage gain for this mixer is -14.7 dBV and the power
in the fourth order harmonic at frequency f = 2fIF is -114.3 dBV. (b) Spectral inten-
sity of output of switching mixer without parametrically defined diode. The IF voltage
gain for this mixer is -4.6 dBV and the power in the fourth order harmonic at frequency
f = 2fIF is -86.7 dBV. Simulation parameters are LO power PLO = 0 dBm and fre-
quency fLO = 1 GHz, RF power PRF = −30 dBm and frequency fRF = 900 MHz,
source resistance RS = 50 Ω, and load resistance RL = 600 Ω, and α = 1.06 mA/V2.

3.4.5 Switching mixer utilizing optimized diode

LTSPICE simulations of the output spectral amplitude for a switching mixer utilizing

the optimized diode is shown in Fig. 3.20(a). Because the load resistance has been

increased and the voltage gain is of interest, Fig. 3.20(b) shows the output spectral

amplitude of the switching mixer without the parametrically defined diode. Although

non-idealities have introduced additional harmonics compared with Fig. 3.18, many

harmonics produced by the switching action remain suppressed. In particular, the -114

dBV amplitude of the 2fIF harmonic is 28 dBV less than that produced by the switching

mixer, reducing the number of poles necessary for 98 dB dynamic range by 4. The IF

voltage gain with the parametrically defined diode of -14.7 dBV is only 0.2 dBV less

than the ideal parametrically defined diode.

80



3.5 Conclusion and future work

In conclusion, the design of electronic heterostructure devices can utilize atomic layer

precision in semiconductor fabrication to mimic an Ohmic (linear) current-voltage char-

acteristic over a specific range of Vbias . Even though electron transport is dominated

by tunneling, it is possible to manipulate low energy electron scattering and resonances

to approach a desired linear current-voltage behavior. However, practical and materials

constraints limit the degree of linearity that may be achieved. Here, it was demonstrated

how greater than 62 dB (10 bit) dynamic range may be obtained in design of an opti-

mized semiconductor heterostructure tunnel device that is only 17 nm thick. This type

of control, in which there is no inelastic electron scattering in the active region, is only

possible because of the wave nature of electrons.

It has also been shown that, using principles of optimal design, it is possible to

design a semiconductor heterostructure tunnel diode customized for a specific applica-

tion. Here a switching mixer is considered and it was shown that a diode featuring a

parametrically defined current-voltage characteristic can reduce the number of spuri-

ous harmonics produced by this mixer. The optimized diode was shown to reduce the

amplitude of the 2fIF harmonic by 28 dB, increasing the dynamic range of the mixer.

The ability to customize device behavior for specific applications is a new approach to

circuit design. Using optimal design to discover devices that behave in new ways, such

as featuring a parametrically defined current-voltage characteristic, has the potential to

enhance the functionality of many currently existing circuits, and may enable access to

previously unavailable circuit behaviors.

Optimization with respect to temperature variation provides a challenging direction

for future work. In the physical model used only the Fermi-Dirac distribution varies

as a function of temperature. This variation affects both current and the self-consistent

potential. However, changes in potential are not strong enough to be used to control the
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temperature dependence of current. A more advanced model may incorporate additional

scattering mechanisms such as electron-electron scattering, in which scattering rates

increase with temperature. This would tend to increase the resistance with temperature,

and it may be possible to access optimal designs in which no change in resistance occurs

over a desired temperature range.

Finally, the trends in Fig. 3.7 could be the result of a fundamental physical mecha-

nism. Future work should include further data collection to develop statistically signif-

icant trends. It is expected that this data will confirm the existence of an optimal value

for N . An investigation of the physical mechanism responsible for this trend could

show mathematically the limits to optimal design in these heterostructure diodes. Sim-

ilar work has been conducted in which the limit to the performance of linear optical

components was found in terms of only their size, shape, and dielectric constants. [28]
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Chapter 4

Inelastic electron transport

In Chapter 1, loss of physics from the use of perturbative methods on the Frölich interac-

tion was discussed. In using Fermi’s golden rule to calculate the inelastic electron scat-

tering rate due to electron-phonon interactions, feedback effects were ignored between

the individual scattering states. Necessary for this feedback is retention of the emitted

phonons within the model, allowing processes involving multiple phonon emissions and

absorptions to contribute to the solution. Since first-order perturbation theory does not

keep track of the phonons, the electron and phonons interact in an incoherent manner.

To obtain additional insight into the physics of the electron-phonon interaction it is

necessary to consider a quantum model in which the electron and phonons may interact

coherently. The relationship between the incoherent and coherent scattering regimes

may be visualized as in the diagram in Fig. 4.1. Before an emitted optical phonon

dissipates into acoustic phonons the electron and phonon may interact in a coherent

manner. This regime is represented by the shaded circle, with an artificial boundary

drawn to guide the eye.

In a perturbative formalism, it is assumed that each scattering event occurs only after

the phonon has dissipated into a bath. A quantum model should be able to transition

between the coherent and incoherent regimes, providing additional physical insight into

perturbative methods. In this chapter I present one such connection. The electron-

phonon interaction is solved with a simple, exactly solvable quantum model, and it is

shown that under certain circumstances predictions of semi-classical perturbation theory

can emulate the predictions of an exact quantum solution.
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Coherent regime Incoherent regime 

e- 

Optical phonon  
dissipation to 
acoustic phonons 

Figure 4.1: Diagram depicting coherent and incoherent regimes for interaction between
an electron and optical phonon. The electron and phonon may interact in a coherent
manner until the optical phonon dissipates into acoustic phonons.

To solve the inelastic scattering problem non-perturbatively an established proto-

type model [13, 2, 14, 9] is used that considers the interaction between an electron and

a localized vibrational mode (an Einstein phonon). This model has been used to inves-

tigate feedback-related features such as fano-like resonances in the transmission [4],

impurity band formation in quantum wells [33], and inelastic effects on wave packet

propagation [30]. The model has a very rich solution space which may be attributed

to treatment of the electron-phonon interaction as a coherent and unitary process even

though it does not include many-body and some self-consistent effects such as energy

level shifts, collisional broadening, and electron-electron interactions. In the following,

it is assumed that it is more important that an exact solution be obtained to a simpler

model than a perturbative solution be obtained to a more complex model, such as Ref.

11.
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4.1 Quantum model of electron-phonon interaction

Consider the inelastic system shown in Fig. 4.2, where the potential barrier is an inelas-

tic “black box”. Only one-dimensional inelastic systems are considered, so that an elec-

tron in initial state |k0〉 with energy E0 enters from the left and inelastically scatters into

a final state |kn〉 with energy En. When the inelastic collision occurs, the electron may

either emit a phonon or absorb a phonon of energy h̄ω0 and momentum q, provided the

system is not at absolute zero. If the electron has energy E0 < h̄ω0, then only virtual

phonons will be emitted.

To conserve energy and momentum, the electron’s final energy is En = E0 − nh̄ω0,

where n is the number of phonons that have been excited, and it’s final momentum is

kn = k0 −
∑

j qj , where the sum is over all phonons the electron has interacted with.

The conventions for n and q are such that positive n denotes a net phonon emission and

−qj is the momentum that the jth phonon carries away. At temperature T = 0 K, the

existence of a ground state restricts n ≥ 0.

Position, x 

Po
te

nt
ia

l e
ne

rg
y,

 U
(x

) ω0 

E0, k0 n = 0 

n = -1 

n = -2 

n = 1 

n = 2 

e- 

Figure 4.2: Reflection and transmission due to an inelastic system. An electron initially
in state |k0〉 with energy E0 inelastically scatters into final state |kn〉 with energy En =
E0 − nh̄ω0. Positive n denotes net phonon emission and the phonon energy is h̄ω0.
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Inelastic scattering between an electron and dispersionless phonons is modeled by

Einstein phonons linearly coupled to the electron wave function. One-dimensional elec-

tron transport in the x-direction in a semiconductor is considered. It is assumed that the

electron density is sufficiently small that electron-electron interactions may be ignored.

For an electron of effective mass m interacting with Einstein phonons, the Hamiltonian

is [13]

Ĥ = − h̄2

2m

∂2

∂x2
+ U(x) + h̄ω0b̂

†b̂+
(
g0 + g1(b̂† + b̂)

)
δ(x− x0), (4.1)

where the first two terms are kinetic energy and potential energy of the electron respec-

tively, the third term is the total energy stored in the phonons, and the final term couples

the electron to the Einstein phonons located at position x = x0. The creation and anni-

hilation operators for a phonon of energy h̄ω0 are b̂† and b̂ respectively. The static ampli-

tude of the delta is g0, and the electron-phonon coupling constant is g1, both having units

of energy times distance. It is assumed that a conduction band electron interacts with

longitudinal-optic (LO) phonons via the Frölich interaction in the semiconductor GaAs.

The effective electron mass is m = 0.07×m0, where m0 is the bare electron mass, and

the phonon energy is h̄ω0 = 36 meV. Because the phonons are not lost to an external

bath, there is no mechanism for dissipation and hence no concept of temperature within

the model. However, the initial condition of the system will have zero excited phonons

and it is in this respect that the temperature will be considered T = 0 K.

To solve the Schrödinger equation the wave function is expanded in terms of the

oscillator basis

〈x|Ψ〉 =
n=∞∑
n=0

ψn(x)|n〉, (4.2)
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Vj

Vj+1

g0,g1Region j Region j+1

a0

Position, x0x x=

a1

a2

b0

b1

b2

d0c0

d1c1

d2c2

ω0

Figure 4.3: Diagram of a potential step with Einstein phonons localized at position
x = x0 (dashed line). Electron waves are incident from the left and right with amplitudes
an and dn, respectively. Waves will be scattered from position x = x0 to the left and
to the right having amplitudes bn and cn, respectively. The electron-phonon coupling
constant is g1, the static amplitude of the delta barrier is g0, the phonon energy is h̄ω0,
and the temperature is T = 0 K.

with the number of excited phonons given by n. Here it is assumed that the electron,

ψ, and phonon, |n〉, wave functions are separable. The domain of interest is discretized

in space into N + 1 regions and the static potential U(x) is approximated as a series of

potential steps. The diagram in Fig. 4.3 shows two regions of the domain separated by a

potential step and Einstein phonons localized at position x = x0. In a plane wave basis,

the electron wave functions of channel n in regions j and j + 1 are

ψjn(x) = ane
ikjnx + bne

−ikjnx, (4.3)

ψj+1
n (x) = cne

ikj+1
n x + dne

−ikj+1
n x, (4.4)

where

kjn =

√
2m (En − Uj)

h̄
. (4.5)
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For the quantum harmonic oscillator,

b̂†b̂ψn|n〉 = nψn|n〉, (4.6)

b̂†ψn|n〉 =
√
n+ 1ψn+1|n+ 1〉, (4.7)

b̂ψn|n〉 =
√
nψn−1|n− 1〉. (4.8)

Applying these operators to the wave function for channel n in the Schrödinger equation

and rearranging,

h̄2

2m

∂2ψn(x)

∂x2
= (nh̄ω0 + U(x)− E0)ψn(x)

+ δ(x)
(√

ng1ψn−1(x) + g0ψn(x) +
√
n+ 1g1ψn+1(x)

)
.

(4.9)

As only the electron wave function is of interest here, notation for the phonon waves

function are omitted. Integrating over the position range x = x−0 to x = x+
0 ,

dψj+1
n (x)

dx

∣∣∣
x=x+

0

− dψjn(x)

dx

∣∣∣
x=x−0

=
2m

h̄2

(√
ng1(cn−1 + dn−1) + g0(cn + dn)

+
√
n+ 1g1(cn+1 + dn+1)

)
.

(4.10)

Here continuity of the wave function across the interface, ψjn(x0) = ψj+1
n (x0), causes

the integration of the first term on the right hand side of (4.9) to equal zero. Substituting

the wave function into (4.10) and enforcing continuity of the wave function at position

x = x0 yields
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an =i
mg1

h̄2kjn

√
n(cn−1 + dn−1) +

[
1

2

(
1 +

kj+1
n

kjn

)
+ i

mg0

h̄2kjn

]
cn

+

[
1

2

(
1− kj+1

n

kjn

)
+ i

mg0

h̄2kjn

]
dn + i

mg1

h̄2kjn

√
n+ 1(cn+1 + dn+1),

(4.11)

and

bn =− i mg1

h̄2kjn

√
n(cn−1 + dn−1) +

[
1

2

(
1− kj+1

n

kjn

)
− i mg0

h̄2kjn

]
cn

+

[
1

2

(
1 +

kj+1
n

kjn

)
− i mg0

h̄2kjn

]
dn − i

mg1

h̄2kjn

√
n+ 1(cn+1 + dn+1).

(4.12)

Letting

αjn = i
mg1

h̄2kjn

√
n, βjn = i

mg1

h̄2kjn

√
n+ 1,

γjn,ac =
1

2

(
1 +

kj+1
n

kjn

)
+ i

mg0

h̄2kjn
, γjn,ad =

1

2

(
1− kj+1

n

kjn

)
+ i

mg0

h̄2kIn
,

γjn,bc =
1

2

(
1− kj+1

n

kjn

)
− i mg0

h̄2kjn
, γjn,bd =

1

2

(
1 +

kj+1
n

kjn

)
− i mg0

h̄2kIn
,

(4.11) and (4.12) become

an = αjn (cn−1 + dn−1) + γjn,accn + γjn,addn + βjn (cn+1 + dn+1) , (4.13)

bn = −αjn (cn−1 + dn−1) + γjn,bccn + γjn,bddn − β
j
n (cn+1 + dn+1) . (4.14)

This recursion relation can be solved in matrix form. At temperature T = 0 K, the

matrix equation is
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

a0

b0

a1

b1

...


=



γj0,ac γj0,ad βj0 βj0 0 0 . . .

γj0,bc γj0,bd −β
j
0 −βj0 0 0

αj1 αj1 γj1,ac γj1,ad βj1 βj1

−αj1 −α
j
1 γj1,bc γj1,bd −β

j
1 −β

j
1

... . . .





c0

d0

c1

d1

...


, (4.15)

a = pstep
j c. (4.16)

4.1.1 Solution to Schrödinger equation using the propagation

matrix method

The above matrix equation is the step matrix for a system containing Einstein phonons.

Multiplying by the free propagation matrix,

pj =



γj0,ace
−ikj0Lj γj0,ade

ikj0Lj βj0 βj0 0 0 . . .

γj0,bce
−ikj0Lj γj0,bde

ikj0Lj −βj0 −βj0 0 0

αj1 αj1 γj1,ace
−ikj1Lj γj1,ade

ikj1Lj βj1 βj1

−αj1 −αj1 γj1,bce
−ikj1Lj γj1,bde

ikj1Lj −βj1 −β
j
1

... . . .


.

(4.17)

If a step change in potential occurs at position x 6= x0, g0 = g1 = 0, and the elastic

propagation matrix of section 2.2.1 is left with each of the channels uncoupled. Multi-

plying the propagation matrices for all N + 1 regions of the spatial domain yields the

matrix equation
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a =
0∏

j=N

pjc = Pc. (4.18)

The Schrödinger equation for a system containing an arbitrary potential and Einstein

phonons may now be solved. At zero temperature, there are no phonons present for the

incident phonon to absorb, so an = δ0,n. Additionally, it is assumed that there are no

electrons incident from the right, making dn = 0 for all n. Then



1

b0

0

b1

...


= P



c0

0

c1

0

...


. (4.19)

The boundary condition dn = 0 decouples the equations containing the known an

and the unknown bn. Thus, (4.19) can be decomposed into the two matrix equations


1

0

...

 =


P1,1 P1,3 . . .

P3,1 P3,3

... . . .



c0

c1

...

 , (4.20)

and


b0

b1

...

 =


P1,2 P1,4 . . .

P3,2 P3,4

... . . .



c0

c1

...

 . (4.21)

Using matrix inversion, cn can be calculated from (4.20), and bn is calculated by substi-

tuting cn into (4.21).
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4.1.2 Conservation of current in the presence of inelastic scatterers

Since each inelastic channel will have separate reflection and transmission coefficients,

proper normalization is required to ensure that unitarity is preserved. That is, the elec-

tron flux density, and hence current density, entering and leaving the system must be

equal, or

T +R =
∞∑
n=0

(Rn + Tn) = 1, (4.22)

where R, T , Rn and Tn are the total reflection, total transmission, channel n reflection,

and channel n transmission coefficients, respectively.

The current density is given by

J = −i eh̄
2m

(
Ψ∗(x, t)

∂Ψ(x, t)

∂x
− ∂Ψ∗(x, t)

∂x
Ψ(x, t)

)
, (4.23)

where the time-dependent state function is

Ψ(x, t) =
∞∑
n=0

ψn(x)|n〉e−iEnt/h̄. (4.24)

Substituting into (4.23) and evaluating in a region having zero electric field,

J = −i eh̄
2m

∞∑
n=0

∞∑
n′=0

〈n′|n〉
(
ψ∗n′

∂ψn(x)

∂x
e−i(En−En′ )t/h̄ − ∂ψ∗n′(x)

∂x
ψne

−i(En′−En)t/h̄

)
.

(4.25)

Since the phonon states are orthonormal, the off-diagonal matrix elements are zero.

Furthermore, decaying states do not carry any net current. Thus, (4.25) reduces to

J =
eh̄

m

nmax∑
n=0

kn
(
|an|2 − |bn|2

)
, (4.26)
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where

nmax =

⌊
E0 − U
h̄ω0

⌋
, (4.27)

is the maximum number of real phonons that can be excited. Thus, the orthogonal-

ity of the phonon states causes the current due to each of the inelastic channels to be

independent.

Again assuming temperature T = 0 K and no electrons incident from the right, the

current densities at the left and right hand sides of the system are

JL = e
h̄kL

0

m
− eh̄

m

nL
max∑
n=0

kL
n |bn|2, (4.28)

and

JR =
eh̄

m

nR
max∑
n=0

kR
n |cn|2, (4.29)

where superscripts L and R indicate that the variable is to be evaluated using the poten-

tial at the left or right hand side of the system, respectively. Setting these two equations

equal to each other gives the unitarity condition

1 =

nL
max∑
n=0

kL
n

kL
0

|bn|2 +

mL
max∑

m=0

kR
m

kL
0

|cm|2. (4.30)

Comparing with (4.22), the transmission and reflection coefficients are

T (E0) =

nR
max∑
n=0

Tn(E0) =

nR
max∑
n=0

kR
n

k0

|cn(E0)|2, (4.31)

R(E0) =

nL
max∑
n=0

Rn(E0) =

nL
max∑
n=0

kL
n

k0

|bn(E0)|2. (4.32)
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4.1.3 Strong coupling regime

Numerical solutions require that only a finite number of phonons, M , be included in

the simulation. However, the solution to the truncated system will not converge with

increasing M if g1 exceeds a critical value, g1,c. For g1 > g1,c, the inelastic channels

are so strongly coupled that all inelastic channels contribute significantly to the total

response of the system, and hence the matrix may not be truncated for any value of M .

To determine g1,c analytically consider the continued fraction solution

c0 =
1

1 +

m2g21
h̄4k0k1

1+

2m2g21
h̄4k1k2

...

. (4.33)

For large M the coupling element approaches

lim
N→∞

i

√
Mmg1

h̄2kM
=

√
mg1

h̄
√

2h̄ω0

, (4.34)

and the continued fraction expansion becomes

. . .

1−
p2

1− p2

1− p2

...

, (4.35)

where p is equal to (4.34). This is the continued fraction solution of the quadratic equa-

tion

x2 − x+ p2 = 0 ⇒ x = 1− p2

x
, (4.36)

which diverges by oscillation if 1− 4p2 < 0. Hence from (4.34) one obtains g1,c = 0.14

eV nm for GaAs.
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4.2 Introduction to unitary feedback

To understand the behavior of the model the system is first considered under symmet-

ric conditions. For illustrative purposes, a unit amplitude sinusoidal wave function is

injected from both the left and right hand sides of the spatially symmetric potential

illustrated in Fig. 4.4(a). The probability of an electron of energy E0 exiting the right

hand side of Fig. 4.4(a) in channel n is

|c′n(E0)|2 =
kn
k0

|cn(E0)|2. (4.37)

For energies E0 < h̄ω0, no real phonons may be emitted and only |c′0|2 is nonzero.

Once the n = 1 channels open, this probability must decrease to preserve unitarity

when |c′1|2 becomes finite. To a lesser extent |c′0|2 is also increased by feedback from

the n = 1 channel as the electron may emit a phonon, reflect off the step change in

the potential barrier, and reabsorb the phonon at position x = x0. As a result of these

coherent interactions the n = 0 channel may not be considered an elastic channel. One

may see in Fig. 4.4(b) that the feedback between the channels driven by unitarity gives

rise to features in the spectrum.

Now consider a system in which the spatial symmetry is broken by injecting the

electron from position x = −∞. The system is composed of a constant background

potential, U(x) = 0 with Einstein phonons characterized by g0 = 0.2 eV nm, and

g1 = 0.12 eV nm. Figure 4.5 shows the transmission of this system compared to the

elastic transmission (g1 = 0 eV nm) along with the transmission due to each inelastic

channel.

The oscillating phonon creates a variation in the amplitude of the delta barrier, which

in turn perturbs the electron transmission. Since tunneling exponentially increases with
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Figure 4.4: (a) A rectangular potential barrier containing Einstein phonons (dashed line).
The phonons are centered within the barrier and the electron injected with energyE0 has
plane wave components incident from ±∞. (b) Probability of an electron of energy E0

exiting the right hand side of (a) in channel n. The potential barrier has energy U0 = 0.1
eV and length L = 1 nm, the phonons have energy h̄ω0 = 36 meV, and the coupling
constant is g1 = 0.05 eV nm. The effective electron mass ism = 0.07×m0, the number
of inelastic channels included in the simulation is M = 11, the temperature is T = 0 K,
and the simulation converged with a relative error of less than 10−10.
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Figure 4.5: (a) Calculated total inelastic electron transmission in the presence of inelas-
tic phonon scattering (solid) and total elastic transmission in the absence of any phonon
scattering (dashed). (b) Transmission due to each of the inelastic channels. The poten-
tial contains Einstein phonons in an otherwise constant background potential, U(x) = 0.
The model parameters are m = 0.07×m0, h̄ω0 = 36 meV, g0 = 0.2 eV nm, g1 = 0.12
eV nm, and T = 0 K.
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decreasing potential barrier energy, the electron feels a delta barrier that is effectively

lower than g0. The result is virtual-phonon enhanced transmission, evident in Fig. 4.5 .

The cusps are a classic sign of a unitary system [13, 5], and Fig. 4.5(b) clearly shows

that the cusps are due to the opening of a new inelastic channel. As a new channel opens,

unitarity requires that the amplitudes of the higher energy states be reduced in order to

feed into the new state. At energy E0/h̄ω0 = 1 in the Fig., the n = 1 channel is

beginning to propagate. The amplitude of the n = 0 channel decreases as the amplitude

of the n = 1 channel increases, creating the cusp-like appearance.

4.3 Quantum and semi-classical inelastic electron trans-

port

The examples of section 4.2 have shown that the electron transmission coefficient calcu-

lated using a fully quantum mechanical model decreases after the excitation threshold

for the first real phonon. However, it will be shown that simple first-order perturbation

theory predicts that the total electron transmission increase at this threshold. In this

section the predictions of quantum and semi-classical models of inelastic scattering are

compared and the conditions under which the predictions of simple first-order pertur-

bation theory emulate those of a fully quantum model are found. It is shown that the

conditions under which this occurs is typical of inelastic scattering experiments.

4.3.1 Simple first-order perturbation theory

Simple first-order perturbation theory predictions are obtained by truncation at the first

term in the Born series. In terms of the Green’s function, the exact solution to the

Schrödinger equation is given by
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Ψ(x) = eik0x|0〉+

∫ ∞
−∞

dx′G(0)(x− x′)Û(x′)Ψ(x′), (4.38)

where G(0)(x− x′) is the free particle Green’s function and Û(x) is the potential. Since

only inelastic scattering is of interest, let g0 = 0 eV nm and U(x) = 0 eV. Then the

potential is

V̂ (x) = g1(b̂† + b̂)δ(x), (4.39)

where for simplicity x0 = 0, and the Schrödinger equation for channel n is

(
∂2

∂x2
+ k2

n

)
ψn(x)|n〉 =

2m

h̄2 Û(x)ψn(x)|n〉. (4.40)

The Green’s function is defined as the solution to

(
∂2

∂x2
+ k2

n

)
G(0)
n (x− x′) = δ(x− x′), (4.41)

where G(0)
n (x − x′) is the propagator for an electron in channel n. The total Green’s

function is the sum of all channel Green’s functions

G(0)(x− x′) =
∞∑
n=0

G(0)
n (x− x′)|n〉〈n|, (4.42)

where the identity operator ensures that G(0)
n operates only on the proper channel. Sub-

stituting the Fourier transform of the channel Green’s function, G̃(0)
n (q), into (4.41),

G̃(0)
n (q) =

1

(q + kn)(q − kn)
. (4.43)

Transforming back into real space,
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G(0)
n (x− x′) = −ie

ikn(x−x′)

2kn
, (4.44)

where the pole at q = kn has been chosen because the transmitted waves are of interest.

Substituting (4.42) and (4.44) into (4.38),

Ψ(x) = eik0x|0〉 − i2mg1

h̄2

∞∑
n=0

∫ ∞
−∞

dx′
eikn(x−x′)

2kn
|n〉〈n|(b̂† + b̂)δ(x′)Ψ(x′). (4.45)

The delta function eliminates the integral, leaving

Ψ = |0〉 − img1

h̄2

∞∑
n=0

1

kn
|n〉〈n|(b̂† + b̂)Ψ, (4.46)

where the complex exponentials have been omitted. These phase factors can be removed

because orthogonality of the phonon states prevents interference effects between chan-

nels at positions x 6= x0 and the transmission coefficient for each channel is independent

of the absolute phase of the electron in that channel.

The iterative solution of (4.46) is the Born series, of which the first-order approxi-

mation is made by letting Ψ = |0〉 on the right hand side. Then

Ψ(1) = |0〉 − img1

h̄2k1

|1〉, (4.47)

and simple first-order perturbation theory yields the transmitted wave function ampli-

tudes

c0 = 1, c1 = −img1

h̄2k1

, (4.48)

and transmission coefficient
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T (E0) = 1 +
m2g2

1

h̄4k0k1

θ(E0 − h̄ω0). (4.49)

This is clearly not self-consistent, as the transmission violates unitarity and c1 is infinite

at E0 = h̄ω0.

The second-order Born approximation is made by substituting Ψ(1) into (4.46). To

obtain the exact solution, this procedure is repeated ad infinitum. Considering only

the n = 0 and n = 1 channels for simplicity, the exact solution is

Ψ =

(
|0〉 − img1

h̄2k1

|1〉
) ∞∑
m=0

(
− m2g2

1

h̄2k0k1

)m
=

1

1 +
m2g2

1

h̄4k0k1

|0〉 − i
mg1

h̄2k1

1 +
m2g2

1

h̄4k0k1

|1〉.

(4.50)

Whereas the first-order solution allowed only a single transition from the n = 0 channel

to the n = 1 channel, the exact solution accounts for all possible transitions between

these two channels through the term in the denominator. This term normalizes the wave

function amplitudes, ensuring that unitarity is preserved.

As a check (4.50) is compared to the exact solution found using the matrix equation

of (4.20). With only the n = 0 and n = 1 channels considered, this matrix equation is

 1

0

 =

 1 β1

α1 1

 c0

c1

 , (4.51)

which can be solved to yield

c0 =
1

1 +
m2g2

1

h̄4k0k1

, c1 = −i
mg1

h̄2k1

1 +
m2g2

1

h̄4k0k1

. (4.52)
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Figure 4.6: (a) Transmission coefficient calculated using quantum model and Born
series to selected orders. Near phonon thresholds the perturbative solution does pro-
duce qualitatively accurate predictions. Simulation parameters are effective electron
mass m = 0.07 ×m0, phonon energy h̄ω0 = 36 meV, coupling strength g1 = 0.05 eV
nm, and N = 15 inelastic channels in the quantum simulation.

As expected this is identical to (4.50). However, it is clear that for energies near

E0 = nh̄ω0, the Born series will not converge as the wave vectors will approach zero.

Thus, perturbation theory cannot produce accurate predictions for any order near phonon

thresholds, where many of the unitarity-driven features occur.

This is evident in Fig. 4.6, which compares the transmission coefficients calculated

with the quantum solution of (4.52) and the Born series to selected orders. It can be seen

that away from the phonon thresholds the Born series approximates well the exact solu-

tion when calculated to high orders. However, near the phonon thresholds singularities

occur, and perturbation theory is not a good approximation.

Simple first-order perturbation theory is usually justified on the basis of weak cou-

pling, suggesting the g2
1 term in the denominator can be ignored. However, it is this

term that provides feedback between the channels and preserves unitarity, giving rise to

important features in the exact solution.
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In the following, the quantum and perturbative transmission spectra will be com-

pared when the value of the coupling constant yields a matrix element equal to that of

the Frölich interaction. The matrix element coupling initial state |k0〉 to final state |k1〉

is

|〈k1|Ĥ|k0〉|2 = g2
1|ψ1(0)|4. (4.53)

For a conduction band electron of energy E0 = 52 meV interacting with an LO phonon

in GaAs, (4.53) is equal to the matrix element for the Frölich interaction per unit volume

when g1 = 0.008 eV nm.

4.3.2 Inelastic scattering in an otherwise constant background

potential

When calculating inelastic scattering rates, it is commonly assumed that weak coupling

leaves the incident wave unchanged by the inelastic scattering event and that simple

first-order perturbation theory is an accurate approximation. Figure 4.7 shows that this

is not the case. Shown in Fig. 4.7(a) is the quantum and in Fig. 4.7(b) the perturbative

predictions for the transmission of an electron of energyE0 incident from x = −∞. The

Einstein phonons are in a constant background potential U(x) = 0 eV with coupling

constants of g1 = 0.008 eV nm (solid) and g1 = 0.08 eV nm (dashed). The inset of

Fig. 4.7(a) shows the features of the quantum transmission given a coupling constant of

g1 = 0.008 eV nm on a fine energy scale. Although these features are resolved due to

the assumed long lifetime of the electron states, it is anticipated that energy broadening

due to finite lifetime effects will not qualitatively alter the results.
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Rather than a decrease in transmission nearE0 = h̄ω0 predicted in the quantum case,

the transmission coefficient predicted by perturbation theory increases, violating unitar-

ity and losing features found in the exact quantum solution. Even under conditions of

weak coupling with g1 = 0.008 eV nm, the quantum and perturbative solutions are dra-

matically different. Clearly weak coupling alone does not guarantee that the predictions

of first-order perturbation theory will appear similar to the exact quantum solution.

0.6

0 0.5 1.0 1.5 2.0 2.5 3.0

0.5

0.4

0.3

0.2

0.1

0

E0/hω0 – 1 (10-5)
0

T(
E 0

)

0.8

0.6

0.4

0.2

0
5 10-5-10

1.0
0.7

0.8

0.9

1.0

Quantum
(a)

Tr
an

sm
is

si
on

, T
(E

0)

Normalized energy, E0 /hω0

0.95

Normalized energy, E0 /hω0

1.45

1.40

0 1.5 3.0

Tr
an

sm
is

si
on

, T
(E

0)

2.52.00.5 1.0

× 10

1.35

1.30

1.25

1.20

1.15

1.10

1.05

1.00

(b)
Perturbative

Figure 4.7: Transmission through Einstein phonons located in a constant background
potential U(x) = 0 eV with coupling constants of g1 = 0.008 eV nm (solid) and g1 =
0.08 eV nm (dashed) using the (a) exact quantum solution and (b) perturbative solution.
The electron of effective mass m = 0.07 ×m0 is injected from x = −∞ with energy
E0, the phonon energy is h̄ω0 = 36 meV, and M = 11 inelastic channels were included
in the simulation. The inset shows the features of the transmission about E0 = h̄ω0 with
a coupling constant of g1 = 0.008 eV nm on a fine energy scale.

4.3.3 Condition when perturbation solution appears similar to

exact calculation

Consider the potential shown in Fig. 4.4(a) with an electron of energy E0 injected from

x = −∞. The transmission through this system is shown for the quantum case in

Fig. 4.8(a) and for the first-order perturbation theory approximation in Fig. 4.8(b). A
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rectangular potential barrier of energy U0 = 0.25 eV and length L, and an electron-

phonon coupling constant of g1 = 0.05 eV nm are used. A relatively strong coupling

constant is used to enhance the features.

0

Normalized energy, E0/hω0

1.2

1.0

0.6

0.4

0.2

0 0.2 1.0 1.8 2.0

Tr
an

sm
is

si
on

, T
(E

0)

0.8

1.61.41.20.4 0.6 0.8

L = 0.4 nm

L = 1 nm

L = 5 nm

L = 0 nm(a) Quantum

× 30

0

Normalized energy, E0/hω0

1.2

1.0

0 0.2 1.0 1.8 2.0

Tr
an

sm
is

si
on

, T
(E

0)

1.61.41.20.4 0.6 0.8

L = 0 nm

L = 0.4 nm

L = 1 nm

L = 5 nm

× 30

0.8

0.6

0.4

0.2

(b) Perturbative

Figure 4.8: (a) Quantum and (b) first-order perturbative solutions for the transmission
of an electron of energy E0 injected from x = −∞ through the potential shown in Fig.
4.4(a). The potential barrier has energy U0 = 0.25 eV and length L, g1 = 0.05 eV nm,
h̄ω0 = 36 meV, the effective electron mass is m = 0.07 × m0, and M = 11 inelastic
channels were included in the simulation.

For small L features exhibited by the quantum and perturbative transmission spectra

are dramatically different for energies both higher and lower than E0 = h̄ω0. For lower

energies the quantum transmission is enhanced by the excitation of virtual phonons.

For energies greater than E0 = h̄ω0, the L = 0.4 nm perturbative transmission shows

the semi-classical “opening of a new channel,” whereas the quantum transmission does

not. However, as L increases the transmission reduces and the quantum and perturbative

solutions appear qualitatively similar on the scale shown.

Near E0 = h̄ω0 the behavior of the two solutions become qualitatively similar for

large L, as shown in Fig. 4.9. The Fig. shows the quantum (solid) and perturbative

(dashed) solutions for the transmission shown in Fig. 4.8 for (a) L = 1 nm and (b)

L = 5 nm on a fine energy and transmission scale. The transmission curves have been

offset by T (h̄ω0) so that the two solutions may be compared.
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Figure 4.9: Quantum (solid) and perturbative (dashed) transmission from Fig. 4.8 shown
on a fine scale for potential barrier lengths of (a) L = 1 nm and (b) L = 5 nm. The
transmission curves have been offset by T (h̄ω0) so that the quantum and perturbative
solutions may be compared. The potential barrier has energy U0 = 0.25 eV and length
L, and the phonon is characterized by g1 = 0.05 eV nm and h̄ω0 = 36 meV. M = 11
inelastic channels were included in the simulation and the effective electron mass is
m = 0.07×m0.

For L = 5 nm, the perturbative solution exhibits features qualitatively similar to

those found in the quantum model. In both cases the transmission is well approximated

by exponential tunneling through the barrier and a rapid increase occurs once the elec-

tron has enough energy to emit a real phonon. However, the reflection spectra will

not be qualitatively similar since the reflection coefficient in the quantum model will

reduce to preserve unitarity while the reflection coefficient in the semi-classical model

will increase due to an additional channel for reflection. For the smaller barrier length,

perturbation theory is not a good approximation to the quantum solution. Thus, as the

strength of the potential barrier is increased the semi-classical transmission behavior

predicted by first-order perturbation theory appears qualitatively similar to the behavior

of the quantum model.
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4.3.4 Threshold at which perturbation solution appears similar to

exact calculation

As the transmission coefficient decreases due to increasing potential barrier strength, the

exact quantum transmission as a function of increasing electron energy changes from a

decrease at the first phonon threshold to an increase. The condition

∂T

∂E0

∣∣∣∣
E0=h̄ω+

0

=
∂T0

∂E0

∣∣∣∣
E0=h̄ω+

0

+
∂T1

∂E0

∣∣∣∣
E0=h̄ω+

0

≥ 0, (4.54)

for the exact quantum case is chosen as the condition under which the features in the

first-order perturbation theory solution appear qualitatively similar to those of the exact

quantum solution. The potential used in Fig. 4.8 is considered, and to simplify the

expressions only the n = 0 and n = 1 channels are considered.

As a notational simplification, the energy variable is changed to ∆ = E0 − h̄ω0, so

that the channel energies are E0 = h̄ω0 + ∆ and E1 = ∆. The conditions under which

(4.54) is satisfied are found by evaluating the derivatives in the limit that ∆ → 0. The

wave function amplitudes for the n = 0 and n = 1 channels are given by the solution to

 1

0

 = P

 c0

c1

 , (4.55)

where
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P11 = cosh(κ0L) + i
1

2

(
κ0

k0

− k0

κ0

)
sinh(κ0L),

P12 = i
mg1

h̄2k0

(
cosh(1

2
κ0L)− i k0

κ0

sinh(1
2
κ0L)

)(
cosh(1

2
κ1L)− i k1

κ1

sinh(1
2
κ1L)

)
,

P21 = i
mg1

h̄2k1

(
cosh(1

2
κ0L)− i k0

κ0

sinh(1
2
κ0L)

)(
cosh(1

2
κ1L)− i k1

κ1

sinh(1
2
κ1L)

)
,

P22 = cosh(κ1L) + i
1

2

(
κ1

k1

− k1

κ1

)
sinh(κ1L), (4.56)

and

k0 =

√
2m(h̄ω0 + ∆)

h̄
,

κ0 =

√
2m(U0 − h̄ω0 −∆)

h̄
,

k1 =

√
2m∆

h̄
,

κ1 =

√
2m(U0 −∆)

h̄
.

(4.57)

The derivative ∂T1

∂E0
is considered first. The transmission coefficient for the n = 1

channel is

T1 =
k1

k0

|P21|2

| det(P)|2
. (4.58)

To leading orders in ∆, the determinant has six components,

det(P ) = A+ iB =
(
A−∆−1/2 + A0 + A+∆1/2

)
+ i
(
B−∆−1/2 +B0 +B+∆1/2

)
,

(4.59)

107



where

A− =
g′1√

h̄ω0 + ∆
cosh2(1

2
κ0L) cosh2(1

2
κ1L)

− g′1
√
h̄ω0 + ∆

U0 − h̄ω0 −∆
sinh2(1

2
κ0L) cosh2(1

2
κ1L)

−
√
U0 −∆

4

(
κ0

k0

− k0

κ0

)
sinh(κ0L) sinh(κ1L),

A0 = cosh(κ0L) cosh(κ1L)

− 4g′1√
U0 − h̄ω0 −∆

√
U0 −∆

cosh(1
2
κ0L) sinh(1

2
κ0L) cosh(1

2
κ1L) sinh(1

2
κ1L),

A+ =
1

4
√
U0 −∆

(
κ0

k0

− k0

κ0

)
sinh(κ0L) sinh(κ1L)

− g′1
(U0 −∆)

√
h̄ω0 + ∆

cosh2(1
2
κ0L) sinh2(1

2
κ1L)

+
g′1
√
h̄ω0 + ∆

(U0 − h̄ω0 −∆)(U0 −∆)
sinh2(1

2
κ0L) sinh2(1

2
κ1L),

B− =

√
U0 −∆

2
cosh(κ0L) sinh(κ1L)

− 2g′1√
U0 − h̄ω0 −∆

cosh(1
2
κ0L) sinh(1

2
κ0L) cosh2(1

2
κ1L),

B0 =
1

2

(
κ0

k0

− k0

κ0

)
sinh(κ0L) cosh(κ1L)

− 2g′1√
h̄ω0 + ∆

√
U0 −∆

cosh2(1
2
κ0L) cosh(1

2
κ1L) sinh(1

2
κ1L)

+
2g′1
√
h̄ω0 + ∆

(U0 − h̄ω0 −∆)
√
U0 −∆

sinh2(1
2
κ0L) cosh(1

2
κ1L) sinh(1

2
κ1L),

B− =
2g′1

(U0 −∆)
√
U0 − h̄ω0 −∆

cosh(1
2
κ0L) sinh(1

2
κ0L) sinh2(1

2
κ1L)

− 1

2
√
U0 −∆

cosh(κ0L) sinh(κ1L),

g′1 =
mg2

1

2h̄2 .

(4.60)
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Likewise, the numerator has two components,

k1

k0

|P21|2 = q = q−∆−1/2 + q+∆1/2, (4.61)

where

q− =
g′1√

h̄ω0 + ∆
cosh2(1

2
κ0L) cosh2(1

2
κ1L)

+
g′1
√
h̄ω0 + ∆

U0 − h̄ω0 −∆
sinh2(1

2
κ0L) cosh2(1

2
κ1L),

q+ =
g′1

(U0 −∆)
√
h̄ω0 + ∆

cosh2(1
2
κ0L) sinh2(1

2
κ1L)

+
g′1
√
h̄ω0 + ∆

(U0 − h̄ω0 −∆)(U0 −∆)
sinh2(1

2
κ0L) sinh2(1

2
κ1L).

The derivative is then

∂T1

∂E0

=
∂

∂∆

q

A2 +B2
=

(A2 +B2) ∂q
∂∆
− 2q

(
A ∂A
∂∆

+B ∂B
∂∆

)
(A2 +B2)2

=
A
(
A ∂q
∂∆
− 2q ∂A

∂∆

)
+B

(
B ∂q
∂∆
− 2q ∂B

∂∆

)
(A2 +B2)2 . (4.62)

Evaluating the first term in the numerator,

lim
∆→0

A

(
A
∂q

∂∆
− 2q

∂A

∂∆

)
=

1

2
q−(A−)2∆−5/2. (4.63)

From symmetry of the expressions the second term in the numerator is found by letting

A→ B. Using these expressions, the derivative is
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lim
∆→0

∂T1

∂E0

=
1

2∆

q−∆−1/2

(A−∆−1/2)2 + (B−∆−1/2)2

(A−∆−1/2)2 + (B−∆−1/2)2

(A−∆−1/2)2 + (B−∆−1/2)2

=
1

2∆
T1(h̄ω0). (4.64)

Turning now to ∂T0

∂E0
, the transmission coefficient for the n = 0 channel is

T0 =
|P22|2

| det(P)|2
, (4.65)

and to leading order in ∆ the numerator is

|P22|2 = p = p−∆−1 + p0 + p+∆, (4.66)

where

p− =
U0 −∆

4
sinh2(κ1L),

p0 = cosh2(κ1L)− 1

2
sinh2(κ1L),

p+ =
1

4(U0 −∆)
sinh2(κ1L).

The derivative ∂T0

∂E0
will have the same form as (4.62), but in this case the first term in

the numerator is

lim
∆→0

A

(
A
∂p

∂∆
− 2p

∂A

∂∆

)
= −p−A0A−∆−5/2, (4.67)

and the derivative is
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lim
∆→0

∂T0

∂E0

= − 1

∆

p−∆−1

(A−∆−1/2)2 + (B−∆−1/2)2

(
A0A−∆−1/2 +B0B−∆−1/2

)
(A−∆−1/2)2 + (B−∆−1/2)2

= − 1

∆
T0(h̄ω0)

(
A0A−∆−1/2 + A0B−∆−1/2

)
(A−∆−1/2)2 + (B−∆−1/2)2

. (4.68)

It can be shown that the numerator simplifies to

lim
∆→0

A0A− +B0B− = −q−, (4.69)

so that

lim
∆→0

∂T0

∂E0

= − 1

∆
T0(h̄ω0)

q−∆−1/2

(A−∆−1/2)2 + (B−∆−1/2)2
= − 1

∆
T0(h̄ω0)T1(h̄ω0). (4.70)

Substituting (4.64),

lim
∆→0

∂T0

∂E0

= −2T0(h̄ω+
0 )

∂T1

∂E0

∣∣∣∣
E0=h̄ω+

0

= −T0(h̄ω0)

(
∂T1

∂E0

∣∣∣∣
E0=h̄ω+

0

+
∂R1

∂E0

∣∣∣∣
E0=h̄ω+

0

)
, (4.71)

where the last step comes from the spatial symmetry forcing T1 and R1 to be equal.

The sum of the derivatives in (4.71) gives the total rate of change of the n = 1

channel, and to preserve unitarity the total rate of change of the n = 0 channel must be

equal and opposite. According to (4.71), the transmission coefficient gives the fraction

of this rate of change that is due to the transmission coefficient. The remaining fraction

must come from the reflection coefficient. Substituting (4.71) into (4.54), the features
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in the first-order perturbation theory solution appear similar to those of the quantum

solution when

T (h̄ω0) ≤ 1

2
. (4.72)

Similarity between the quantum and perturbative transmission spectra occurs when

the transmission coefficient has reduced enough for a majority of the quantum feedback

effects to occur in the reflection. If T (h̄ω0) is very small due to a large potential barrier,

the transmission contributes little to the opening of the new inelastic channel and the

simple first-order perturbation approximation emulates quantum behavior. The coupling

constant contributes to this condition through virtual phonon assisted tunneling. Larger

coupling results in larger T (h̄ω0), which will require a stronger potential barrier to reach

T (h̄ω0) ≤ 1
2
.

If the phonon is moved to one side of the potential barrier, the existence of a prop-

agating state next to the phonon will enhance inelastic scattering while the reflection of

only one inelastically scattered wave inside of the barrier decreases feedback from the

n = 1 channel into the n = 0 channel. Both of these effects make T0 decrease faster at

the phonon threshold. In order to reduce ∂T0

∂E0
sufficiently that ∂T

∂E0
> 0, the transmission

coefficient at the threshold is less than 1
2
. The condition becomes

T (h̄ω0) ≤ cosh2(κUL)

2
(
cosh2(κUL)− 1

2
sinh2(κUL)

) (
cosh2(κωL)− 1

2

(
1− h̄ω0

U0−h̄ω0

)
sinh2(κωL)

) ,
(4.73)

when the phonon is located on the right side of the barrier, and
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T (h̄ω0) ≤
cosh2(κωL) + h̄ω0

U0−h̄ω0
sinh2(κωL)

2
(
cosh2(κUL)− 1

2
sinh2(κUL)

) (
cosh2(κωL)− 1

2

(
1− h̄ω0

U0−h̄ω0

)
sinh2(κωL)

) ,
(4.74)

when the phonon is located on the left side of the barrier, where κU =
√

2mU0/h̄ and

κω =
√

2m(U0 − h̄ω0)/h̄.

Shown in Fig. 4.10 is the simulated transmission coefficient at which ∂T
∂E0

= 0 at

energy E0 = h̄ω0 when the phonon is centered (solid), placed on the right side (dashed),

and placed on the left side (dotted) of the potential barrier. In the simulations, U0 is fixed

while L is swept until the condition is satisfied, with g1 = 0.008 eV nm and M = 11.

Potential barrier lengths of up toL = 55 nm were considered. As predicted the threshold

occurs at T (h̄ω0) = 1
2

when the phonon is centered independent of the strength of the

potential barrier and smaller transmission coefficients are required for the asymmetric

cases. However, as U0 is increased L is decreased to achieve the threshold transmission,

lessening the asymmetry and causing the three cases to converge as L→ 0.
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Figure 4.10: Transmission coefficient at which ∂T/∂E0 = 0 at energy E0 = h̄ω0 for
three different phonon locations. In the simulation the potential barrier energy U0 > h̄ω0

is fixed and the potential barrier length L is swept until ∂T/∂E0 = 0 at energy E0 =
h̄ω0. The simulation used a coupling constant of g1 = 0.008 eV nm, phonon energy
h̄ω0 = 36 meV, electron effective mass m = 0.07×m0, and M = 11.
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When the phonon is placed on the left hand side of the potential barrier the trans-

mitted waves for both the n = 0 and n = 1 channels must tunnel through the poten-

tial barrier before exiting the system. The n = 1 channel has a larger decay constant

than the n = 0 channel, decreasing T1 more than T0 and requiring a smaller ∂T0/∂E0

to satisfy (4.54). For potential barrier energy on the order of the phonon energy this

effect becomes so great that first-order perturbation theory does not approximate well the

quantum solution for any barrier length, L. In the Fig. the cutoff occurs at V0 = 111.4

meV and L = 4 nm. One may make the argument that requiring the transmission

coefficient to be small in order for perturbation theory to be a good approximation is

equivalent to requiring the inelastic coupling strength be weak relative to the elastic

scattering strength. However, the existence of the cutoff shows that this is not the case,

as the combination of weak coupling and large elastic scattering strength are not always

sufficient. Thus, even in the case of weak coupling and large potential barrier strength,

conditions exist under which perturbation theory cannot appear qualitatively similar to

the exact quantum solution.

4.4 Conclusion and future work

Perturbation theory, particularly Fermi’s golden rule, is widely used in electron transport

without any physical justification for its accuracy with respect to a quantum model. Here

I have started from a simple, exactly solvable quantum model and shown a connection

to semi-classical predictions of first-order perturbation theory, deriving the conditions

under which its predictions may be qualitatively accurate to those of a fully quantum

model. It is shown that a small coupling coefficient alone is insufficient, and that only

when a majority of self-consistent feedback effects occur in the electron reflection coef-

ficient may the predictions of first-order perturbation theory be considered qualitatively
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accurate. Further progress in electron transport may be possible by repeating this pro-

cess with other scattering mechanisms.

The physical model presented here models the steady-state response of an electron

in an infinite lifetime plane wave state to localized Einstein phonons. Since scattering

causes the lifetime of an electronic state to be finite, the finite lifetime must be accounted

for in the physical model to be self-consistent. Future work on this model may include

accounting for finite life-time effects in the scattering process.

Physically, a finite lifetime may be modeled by adding an imaginary component to

the energy. In the time-domain this results in exponential-decay of the state, while in

k-space the state is broadened into a Lorentzian distribution. Because of this broaden-

ing, it is expected that the simulated transmission spectrum will be somewhat smoothed

relative to those shown here, although the qualitative features should remain unchanged.

When adding the imaginary component to the electron’s energy, care must be taken

to maintain self-consistency. Unitarity can be lost as the imaginary component causes

the electron’s wave function to decay in time, and finite lifetime of the phonon states

should be accounted for as well. The added time-dependence of the interaction will

require solving the time-dependent Schrödinger’s equation and add significant com-

plexity. Additional physical insight may be possible from analysis of how these effects

change the threshold condition for qualitatively accurate first-order perturbation theory

predictions, and whether perturbation theory is qualitatively accurate over a wider range

of conditions than those found here.
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Chapter 5

Conclusion

In this thesis the physical model used in previous optimal design efforts was enhanced

through development of a solver for the self-consistent potential. This physical model

was then applied to the optimal design of nanoscale heterostructure devices. Due to the

general nonlinear behavior of non-equilibrium transport, a linear current-voltage charac-

teristic was chosen to demonstrate the extent of control over device behavior and explore

the limits of this control. Excellent linear behavior was achieved with a demonstrated

dynamic range of greater than 65 dB. Limitations of control were explored by exam-

ining the results of optimal design over a range of linear objective function slopes and

device lengths. It was shown that material choices limit access to low energy resonant

states required to control device behavior at low voltage bias. Also shown were limits to

the maximum controllable device length due to elastic scattering limits and the ability

for the voltage bias to control the potential.

The ability to customize the current-voltage characteristic of semiconductor het-

erostructure diodes through optimal design enables co-design of electronic circuits and

the devices within these circuits. This new design methodology was applied to the

design of an RF switching mixer. Additional of a heterostructure diode featuring a

parametrically defined current-voltage characteristic was shown to reduce spurious har-

monics, easing filtering requirements and increasing dynamic range. In particular, a

fourth-order harmonic at twice the intermediate frequency is reduced by 28 dB, reduc-

ing by 4 the number of filter poles necessary for a fixed dynamic range.
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To progress further in the development of physical models, simple exactly solvable

quantum models should be favored over advanced models that require the use of per-

turbation theory. It was demonstrated that simple first-order perturbation theory for the

electron-phonon interaction can qualitatively predict features of an exactly solved quan-

tum model only when transmission coefficients are sufficiently reduced. Situations in

which perturbation theory cannot provide accurate predictions were also demonstrated.

With these findings and new physical insight, it is hoped that the same treatment can

be applied to other interactions to determine when models using perturbation theory are

qualitatively approximating the exact quantum model.

This work has been completed with the intent of laying groundwork for further

development and application of optimal design. Optimal design is a powerful new

design technology that will enable engineers to customize device behaviors for spe-

cific applications. Further development of this design process will provide access to

fundamentally new device and circuit functionalities.
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