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Abstract

Quantum fluctuations play a critical role in determining the steady-state and transient

response of a laser. Such fluctuations can dominate behavior when there is a small num-

ber of particles in the system. Correlations between n discrete excited electronic states

and s discrete photons can create non-Poisson probability distributions and damp the

average dynamic response of laser emission. In this thesis a quantum mechanical treat-

ment of fluctuations and saturable absorption in meso-scale lasers is presented. Time

evolution of the density matrix is obtained from numerical integration and field-field and

intensity-intensity correlations are calculated to obtain steady-state line width and pho-

ton statistics. Inclusion of a saturable absorber in the otherwise homogeneous medium

is shown to suppress lasing, increase fluctuations, and enhance spontaneous emission

near threshold. Methods to connect between quantum, meso-scale and classical systems

is also developed.
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Chapter 1

Introduction- review of semi-classical

laser theory

1.1 Introduction

Coherent electromagnetic radiation in the microwave range was first observed in ammo-

nia in 1954 by Gordon, Zieger and Townes [Ref.[1]]. The idea to extend the concept

to optical frequencies was suggested by Schawlow and Townes [Ref.[2]], creating a

device called the laser (light amplification by stimulated emission of radiation). The

laser essentially consists of an ensemble of excited atoms interacting with electromag-

netic radiation inside a low-loss optical cavity. Only certain distinct frequencies of elec-

tromagnetic radiation attain appreciable intensity inside the optical cavity. The active

atoms are in resonance with one of these cavity modes. An inverted medium converts

energy to the optical field whose intensity can increase greatly. The optical field stimu-

lates transitions in the form of stimulated emission which leads to lasing light. Maiman

demonstrated the first pulsed laser operation in Ruby [Ref.[3]] and the first continuous

wave operation of a He-Ne gas laser was achieved by Javan [Ref.[4]]. Since then, other

systems capable of lasing have been developed. An important example is the semicon-

ductor laser, where the inverted medium is created by electrons in the conduction band

and holes in the valence band. Transitions between these states can produce lasing pho-

tons. Semiconductor laser diodes are employed in diverse and important applications.
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They are used in fiber-optic communication systems for the internet, they are essential

for all optical storage, and they enable high-quality low-cost printing.

Widespread use of laser requires low threshold pump powers and high efficiency. The

issue of low threshold can be addressed in part by reducing device size. An important

advancement was made in this field by developing high-Q optical cavities following an

idea by Purcell [Ref. [5]]. He showed that the spontaneous emission rate of a medium

can be enhanced by coupling it to the resonant mode of an electromagnetic cavity. The

reverse is also true, when the medium is out of resonance. This is called the cavity

QED effect in which the radiative property of a medium is strongly influenced by its

surrounding environment. Enhancement of spontaneous emission was experimentally

demonstrated by Drexhage in dye atoms [Ref. [6]]. In the case of a laser, the total

spontaneous emission of the inverted medium is divided amongst the lasing mode and

non-lasing mode by fraction β and (1− β) respectively. Inhibiting emission into optical

modes other than the lasing mode lowers lasing threshold. The cavity QED effect can

also be utilised to achieve this criteria. Minimizing device sizes was accompanied by

development of high-Q microcavities such as microdisk, microsphere, photonic crys-

tal cavities which can lead to lasers with high β values [Ref. [7]]. Creating devices of

smaller dimension is a subject of both practical and theoretical interest. Smaller devices

may cost less. These systems may also show new physical effects, different from a bulk

medium. The ultimate microscopic limit is the idea of single atom lasers or masers.

The gain medium in this case consists effectively of a single atom. Coupled to high Q

superconducting cavities, micromasers can be used for studying fundamental atom-field

interactions. Purely quantum mechanical effects like squeezing, production of number

states and trapped states are observed in micromasers. These model systems have been

experimentally realised [Ref. [8, 9]].
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Lasing is a specific example among a rich variety of phenomena associated with light-

matter interaction. Other interesting phenomena include bistability, resonance fluores-

cence, inelastic light scattering, etc.. Theoretical treatments of light-matter interactions

have led to the development of several theories, treating the system under different

approximations. The semi-classical theory of lasers developed by Lamb [Ref.[10]]

uses Maxwell-Schrödinger equations. It treats the atoms quantum mechanically and

light classically. This essentially led to continnum mean-field rate equation theories

used widely in the study of large systems. Description of the role of inherent quan-

tum mechanical processes such as spontaneous emission in lasing required extension

of these models to a more complete quantum description. Pioneering work in this area

was done by Lax [Ref.[11]], H. Haken [Ref.[12]] and Scully and Lamb [Ref.[13, 14]].

The quantum theories carry information about particle and phase fluctuations, which are

absent in the continnum mean-field description. For example the Poisson distribution

of coherent light far above threshold and the Schawlow-Townes formula for line-width

was verified by these theories.

The solution to the full quantum theory is either obtained under approximations of large

systems or in the case of a single atom. General solution under any operating condition is

difficult. For large systems with small fluctuations, the equations reduce to the standard

Fokker-Plank equations which is solvable [Ref.[15, 16]]. Hence, the approximations

under which these equations are solved somehow restricts them from explaining the

behavior of meso-scale systems which involves a few particles. An attempt towards an

exact solution was made in the maser case by Elk [Ref. [17]]. Other general treatments

of N emitters requires further approximations which influences the final conclusions

[Ref. [18]]. In this work we have tried to address this intermediate regime of opera-

tion, by developing different theoretical models. We have made an attempt to computa-

tionally solve these problems in a way which is not constrained by the approximations
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required for analytical techniques. This work provides a brief review of standard laser

theories and developments of new techniques required for treating meso-scale lasers. A

clear comparison can be made as the equations are solved without the general approx-

imations used in laser theories. The techniques developed follow the density matrix

treatment of Scully and Lamb [Ref.[13, 14]]. An alternate approach using operators in

the Hiesenberg picture [Ref.[11, 15]] is not considered in the current work.

The work in this thesis is organized as follows. The semi-classical theory of laser devel-

oped by Lamb is reviewed in this chapter following the work of Scully and Zubairy

[Ref. [15]]. The atom-field interaction Hamiltonian is derived which is used exten-

sively in the later chapters. All the approximations made in the process of obtaining

the laser rate equations are explicitly considered. The conclusions and the limitations of

the semi-classical model is discussed. The rate equations for the atomic gain medium

is modified to explain the behavior of the semiconductor gain medium in Chapter 2.

The semi-classical nature of the model remains valid. However, discrete levels are

now replaced by band structure, which effectively modifies the rates appearing in the

rate equations. Differences between the semiconductor and atomic theory is reviewed

[Ref. [24]]. Numerical simulation of these rate equations are performed to explain the

static and dynamic characteristics of semiconductor lasers. A discussion of noise pro-

cesses and fluctuations is included to illustrate the limitations of the semi-classical rate

equation treatment in explaining fluctuation-driven phenomena in lasers. Chapters 3

introduces the semi-classical master equations, which are solved numerically to explain

the properties of meso-scale lasers. Both steady-state and transient behavior in the meso-

scale are studied and compared with the results obtained using rate equations. Partic-

ular choices of parameters produce strong bi-stable behavior around threshold in these

meso-scale systems leading to novel effects like lasing suppression, carrier de-pinning

and bimodal distributions. This contradicts the usual threshold properties of large lasers
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predicted using rate equations. The difference is explained by accounting for the under-

lying difference between the probabilistic and mean-field continuum rate equation mod-

els. Chapter 4 reviews the quantum theory of atom-field interaction following the work

of Scully and Zubairy [Ref. [15]]. The Jaynes-Cummings Hamiltonian, which is the

starting point of most problems in quantum optics is derived. The idea of open quantum

systems is introduced with a discussion on reservoirs. A brief review of the quantum

theory of the laser is given and a comparison is made with the semi-classical predic-

tions. This review allows us to critically analyze the approximations which break down

in the meso-scale limit of a few emitters. Chapter 5 discusses the full quantum theory

of meso-lasers using a density matrix treatment. Comparisons are made with the semi-

classical predictions of Chapter 3 and the novel predictions of lasing suppression and

carrier de-pinning are recovered by adding a saturable absorber. The physical meaning

of the parameter β, which is solely responsible for producing these new effects in the

semi-classical theory, is realized using the full quantum theory. A summary of the cur-

rent work is presented in Chapter 6 along with discussions on future applications of the

developed theory.

As mentioned above, we present a brief review of the semi-classical theory of laser in

this chapter, which happens to be one of the earliest theories for explaining behavior

of lasers. This theory treats the emitters or atoms as quantum mechanical systems and

light as a classical field. From a quantum mechanical perspective, a classical field is an

approximation for large photon numbers. Surprisingly, the semi-classical theory valid

for large systems is able to theoretically explain the behavior of most small lasers real-

ized experimentally to date [Ref. [7, 40, 49]]. This fact alone makes a discussion of

this theory necessary as one needs to clearly understand the reasons for its validity in
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these small systems. We start with the derivation of the Hamiltonian for this emitter-

field system which is used extensively as a starting point in our work. The mathematical

notations are similar to the work of Scully and Zubiary [Ref. [15]].

1.2 Dipole approximation and r.E Hamiltonian

The Hamiltonian describing the interaction of an electron with an electromagnetic field

is given by,

H =
1

2m
[p− eA(r, t)]2 + eU(r, t) + V (r) (1.2.1)

where e and m denotes the charge and mass of the electron respectively. p is the canoni-

cal momentum. A and U are the vector and scalar potentials describing the electromag-

netic field. V (r) is the potential describing the interaction of the electron and nucleus

(located at r0). The dipole approximation, ignores the variation of the electromagnetic

field over the size of the atom. Hence the vector potential can be expanded in the limit,

k.r ¿ 1, as

A(r0 + r, t) = A(t) exp[ik.(r0 + r)]

= A(t) exp(ik.r0)(1 + ik.r + ..) = A(t) exp(ik.r0) = A(r0, t) (1.2.2)

The Schrödinger equation for this problem is,

[− ~
2

2m
[∇− ie

~
A(r0, t)]

2 + V (r)]ψ(r, t) = i~
∂ψ(r, t)

∂t
(1.2.3)
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U(r, t) = 0 and ∇.A = 0, in the radiation gauge. Using these properties and by defining

a new wave function φ(r, t)

ψ(r, t) = exp[
ie

~
A(r0, t).r]φ(r, t) (1.2.4)

Eq.(1.2.3) is simplified to give,

i~φ̇(r, t) = [H0 − er.E(r0, t)]φ(r, t) (1.2.5)

where

H0 = [
p2

2m
+ V (r)] (1.2.6)

is the unperturbed Hamiltonian of the electron and nucleus. The expression, E = −Ȧ

is used to write the equation in terms of the gauge independent field E. The new wave

function φ(r, t) differs by a phase factor which does not modify the final results.

The total Hamiltonian is

H = H0 + H1 (1.2.7)

with

H1 = −er.E(r0, t) (1.2.8)

We shall use this Hamiltonian in our subsequent studies. Solution to this problem for

a two-level atom shows Rabi oscillations involving periodic energy transfer between
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atom and field. In this case, in terms of the states |a〉 and |b〉, for a two-level atom, the

Hamiltonian (Eq.(1.2.7)) reduces to

H0 = ~ωa |a〉 〈a|+ ~ωb |b〉 〈b|

H1 = −exE(t) = −(Pab |a〉 〈b|+ Pba |b〉 |a〉)E(t) (1.2.9)

where Pab = P∗ba = e 〈a|x |b〉 is the matrix element of the electric dipole moment. The

completeness relation |a〉 〈a|+ |b〉 〈b| = 1 is used in the above derivation.

1.3 Density matrix

In general, a state vector |ψ〉 contains all information about a system. The expectation

value of any operator O is given by

〈O〉QM = 〈ψ|O |ψ〉 (1.3.1)

In many situations however, exact knowledge of |ψ〉 may be missing; only the probabil-

ity P|ψ〉, that the system is in state |ψ〉 is known. Calculation of expectation value of any

operator O in such situations require not only quantum mechanical averaging but also

statistical averaging over similarly prepared identical systems. Thus we have

〈
〈O〉QM

〉
ensemble

= Tr(Oρ) (1.3.2)

where ρ is the density operator, defined by

ρ =
∑

ψ

Pψ |ψ〉 〈ψ| (1.3.3)
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From the properties of trace we have,

Tr(Oρ) = Tr(ρO) (1.3.4)

For the case of a pure state, all Pψ are zero except the one for a state |ψ0〉 and we have

ρ = |ψ0〉 〈ψ0| (1.3.5)

From the conservation of probability Tr(ρ) = 1. Also, for a pure state, Tr(ρ2) = 1.

The equation of motion of the density matrix can be obtained using the Schrödinger

equation

∣∣∣ψ̇
〉

= − i

~
H |ψ〉 (1.3.6)

The time derivative of ρ (Eq.(1.3.3)) gives

ρ̇ =
∑

ψ

Pψ( ˙|ψ〉 〈ψ|+ |ψ〉 ˙〈ψ| (1.3.7)

where Pψ is time independent. Eq.(1.3.6) is used to replace
∣∣∣ψ̇

〉
and

〈
ψ̇

∣∣∣ and we get

ρ̇ = − i

~
[H, ρ] (1.3.8)

Eq.(1.3.8) is called the Liouville or Von Neumann equation of motion of the density

matrix. This equation gives statistical as well as quantum mechanical information.
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The finite lifetime of the atomic levels due to excited-state decay can be included by

adding phenomenological decay terms to the density operator equation. This is done by

adding by relaxation matrix Γ, defined as

〈n|Γ |m〉 = γnδnm (1.3.9)

The density matrix equation now becomes

ρ̇ = − i

~
[H, ρ]− 1

2
(Γ, ρ)

(Γ, ρ) = Γρ + ρΓ. (1.3.10)

For the case of the two-level atom, the state of the system |ψ〉 can be written as |ψ〉 =

Ca |a〉+ Cb |b〉. The density matrix operator written in terms of states |a〉 and |b〉 is,

ρ = |ψ〉 〈ψ| = [Ca |a〉+ Cb |b〉][C∗
a 〈a|+ C∗

b 〈b|]

= |Ca|2 |a〉 〈a|+ CaC
∗
b |a〉 〈b|+ CbC

∗
a |b〉 〈a|+ |Cb|2 |b〉 〈b| (1.3.11)

where the matrix elements for the operator is,

ρaa = 〈a| ρ |a〉 = |Ca(t)|2

ρab = 〈a| ρ |b〉 = Ca(t)C
∗
b (t)

ρba = ρ∗ab

ρbb = 〈b| ρ |b〉 = |Cb(t)|2 (1.3.12)
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ρaa and ρbb are the occupation probabilities for state |a〉 and |b〉 respectively. The off-

diagonal elements are related to the definition of atomic polarization for an atom.

P (z, t) = 〈ψ| er |ψ〉 = CaC
∗
bPba + C∗

aCbPab = ρabPba + ρbaPab

(1.3.13)

where Pba = 〈b| er |a〉 is the matrix element of the electric dipole moment. The semi-

classical problem of a two-level atom interacting with a electromagnetic field can be

described using the density matrix. Using the Hamiltonian given by Eq.(1.2.9), the

equations of motion for the density matrix elements of the atom can be determined. The

equations are

ρ̇aa = −γaρaa +
i

~
[PabEρba − PbaEρab] (1.3.14)

ρ̇bb = −γbρbb − i

~
[PabEρba − PbaEρab] (1.3.15)

ρ̇ab = −(iω + γab)ρab − i

~
PabE[ρaa − ρbb] (1.3.16)

where γab = (γa + γb)/2 with γa and γb defined by Eq.(1.3.9) and E(t) = Ecos(νt).
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1.4 Maxwell-Schrödinger equations

1.4.1 Population matrix for the atoms

The problem of a single atom interacting with a single cavity mode can be extended to

realistic systems like lasers where multiple atoms are interacting with the field. Self-

consistent solution to equations describing matter and field is required in describing

these more complicated systems. In a semi-classical picture, this problem can be solved

in the following way. The classical field induces dipole-moments in the atoms of the

medium which are treated quantum mechanically. The density matrix is required to

perform statistical summations over the atoms, in order to obtain macroscopic polariza-

tion from the individual dipole moments. This induced polarization in turn drives the

electromagnetic field. Such a procedure makes the formalism self-consistent.

The density operator for individual atoms in terms of its basis states (|a〉, |b〉) is given

by (Eq.(1.3.12))

ρ(z, t, ti) =
∑

α,β

ραβ(z, t, ti) |α〉 〈β| (1.4.1)

where α, β = a, b. The coordinate z, denotes the position of an atom at time t. ti denotes

the injection time of the ith atom and is random by nature. At time ti,

ρ(z, ti, ti) =
∑

α,β

ρ
(0)
αβ |α〉 〈β|

ραβ(z, ti, ti) = ρ
(0)
αβ (1.4.2)

The atoms are pumped into the cavity at rate ra(z, t0) per second per unit volume.

Macroscopic polarization of the medium is obtained by averaging over all atoms. A

population matrix is defined at this point to perform the averaging. The population
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matrix acts as a density operator for the medium and describes its average behavior.

This is given by,

ρ(z, t) =

∫ t

−∞
dtira(z, ti)ρ(z, t, ti)

=
∑

α,β

∫ t

−∞
dtira(z, ti)ραβ(z, t, ti) |α〉 〈β| (1.4.3)

where the effect of the individual atoms are included by averaging over the inital times.

The slow variation of the pump, ra(z, t0) can be ignored. Macroscopic polarization of

the medium, P (z, t) is obtained by adding the effect of all atoms at z at time t,

P (z, t) =

∫ t

−∞
dt0ra(z, ti)Tr[P̂ρ(z, t, ti)]

=
∑

α,β

∫ t

−∞
dt0ra(z, ti)ραβ(z, t, ti)Pβα (1.4.4)

where P̂ is the dipole moment operator. The expression of ρ(z, t, ti) from Eq.(1.4.1)

is used for performing the trace. Only the off-diagonal terms exist after the summation

due to parity of the states. Integration over the initial time, ti in Eq.(1.4.5) effectively

averages over all atoms. For a two-level atom, with Pab = Pba = P , we obtain

P (z, t) = P [ρab(z, t) + ρba(z, t)] (1.4.5)

Similar to the off-diagonal elements of single atoms (Eq.(1.3.13)), the off-diagonal

terms of the population matrix determine macroscopic polarization.

As stated at the begining of this section, interaction with an electromagnetic field

induces polarization in the medium. The equation of motion of the population matrix

of the medium, ρ(z, t) interacting with the electromagnetic field is obtained using equa-

tions of individual atoms, Eqns.(1.3.14-1.3.16). The atoms are initially incoherently
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pumped to levels |a〉 and |b〉 at constant rate ra. This sets the initial off-diagonal terms

to zero (ρ(0)
ab = ρ

(0)
ba = 0). We then have,

ρ̇aa = λa − γaρaa +
i

~
(PEρba − PEρab), (1.4.6)

ρ̇bb = λb − γbρbb − i

~
(PEρba −PEρab), (1.4.7)

ρ̇ab = −(iω + γ)ρab − i

~
PE(ρaa − ρbb), (1.4.8)

where λa = raρ
(0)
aa and λb = rbρ

(0)
bb . The equations for the medium are coupled to the

field E. Self-consistency requires that the induced polarization of the medium be the

driving term for the electromagnetic field. In the following section, we introduce the

equations governing the behavior of the classical field from Maxwell’s equations.

1.4.2 Maxwell’s equations for the field

Classical electromagnetic fields in a material medium are described by Maxwell’s equa-

tions. The energy loss processes in realistic systems like lasers is accounted for in this

problem through inclusion of material conductivity σ which causes linear losses. Lasing

emission occurs in certain discrete electromagnetic modes of an optical cavity. To sim-

plify the problem the modes of a unidirectional ring cavity is considered. The electric

field E is given by

E(r, t) = E(z, t)x̂ (1.4.9)
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where transverse variations in field are assumed to be small on the scale of an optical

wavelength. The unidirectional running wave nature of the mode at frequency ν is

expressed by writing

E(z, t) =
1

2
[E(z, t)e−i[νt−kz+φ(z,t)] + E(z, t)ei[νt−kz+φ(z,t)]] (1.4.10)

Assuming the response of the medium to be linear, the polarization P induced by this

field is

P (z, t) =
1

2
[P(z, t)e−i[νt−kz+φ(z,t)] + P(z, t)ei[νt−kz+φ(z,t)]] (1.4.11)

where E(z, t), P(z, t) and φ(z, t) are slowly varying functions of position and time. The

wave vector, k = ν/c. For the laser problem k = νc/c , where νc represents the cavity

frequency. E(z, t) is assumed to be real.

For satisfying the condition of self-consistency, the complex polarization P(z, t) can

be related to the polarization of the medium written in terms of the population matrix

elements (Eq.(1.4.5))

P(z, t) = 2P [ρabe
i[νt−kz+φ(z,t)] + ρbae

−i[νt−kz+φ(z,t)]] (1.4.12)

The behavior of the electric field and polarization in a material medium is described

by the classical electromagnetic wave equations which can be derived using Maxwell’s

equation. Using the expressions of field E(z, t) and polarization P (z, t) the final form

of the wave equation in the medium is

∂E
∂z

+
1

c

∂E
∂t

= −CE − 1

2ε0

kImP (1.4.13)
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∂φ

∂z
+

1

c

∂φ

∂t
= k − ν

c
− 1

2ε0

kE−1ReP (1.4.14)

where C = σ/(2ε0c) is the linear loss coefficient. The derivatives of the slowly varying

amplitude (E(z, t), P(z, t)) and phase function (φ(z, t)) are ignored in the derivation

of the final field equations. The medium polarization given by Eq.(1.4.5) enters the

electromagnetic field equations as a source term.

Eqs.(1.4.6-1.4.8) and Eqs.(1.4.13-1.4.14) form the self-consistent set of equations.

These equations are applied to construct the semiclassical theory of laser.

1.5 Semi-classical laser theory

The self-consistent Maxwell-Schrödinger equations developed in the previous section

(Eqs.(1.4.6-1.4.8) and Eqs.(1.4.13-1.4.14)) are used to derive the semi-classical equa-

tions describing the operation of a laser.

The frequency of the resonant modes of a ring cavity are given by,

νm =
mπc

S
= kmc (1.5.1)

where S is the circumference of the ring and m is a large integer, typically of the order

of 106, and km is the corresponding wave number. A single mode of a unidirectional

ring cavity with traveling waves of the form exp(ikz) is considered. The Maxwell-

Schrödinger equations are solved under the adiabatic elimination of atomic variables.

The source term, P(z, t), for the field equations Eqs.(1.4.13-1.4.14)) requires solution

of the population density matrix elements ρab (Eq.(1.4.12)). These are solved assuming

the population difference ρaa−ρbb and the E(t) do not vary appreciably in the time scale

of 1/γ, where γ = (γa + γb)/2 is the decay rate of the atomic levels. The polarization,
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P(z, t), solved using the values of the population density matrix in the steady state, is

substituted in the equation of the field so that,

ṅ = −κn +
An

1 + B
An

(1.5.2)

ν + φ̇ = νc +
A(ω − ν)

2γ(1 + B
An

(1.5.3)

and

A = (
P2νγ

ε0~
)

N0

γ2 + (ω − ν)2

B = (
4P2

~2
)

γ2

γaγb

A
γ2 + (ω − ν)2

~ν
2ε0V

(1.5.4)

where V is the volume of the cavity. Here A is the linear gain parameter and B is the

saturation parameter. The equations are written in terms of a dimensionless intensity,

n = ε0E2V
2~ν , which corresponds to the number of photons in the lasing mode (ε0E2V/2

is the total energy in the laser beam and ~ν is the energy of the photon) instead of the

field E . νc is the cavity frequency. In the Eqn.(1.4.13) C has been replaced by κ/2c,

where C = νc/Q (Q is the quality factor of the cavity) to account for field losses through

the mirrors of the cavity. N0 is the unsaturated inversion given by λaγ
−1
a − λbγ

−1
b . The

steady state inversion is given by,

ρaa − ρbb =
N0

1 + R/RS

(1.5.5)

where Rs = γaγb/2γ and R = 1
2
(PE~ )2 γ

γ2+(ω−ν)2
The population difference is N0 at zero

field and increases as the intensity of the electric field increases because of the R/RS

term in the denominator.
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For small excitations (Bn/A ¿ 1) the denominator in Eqs.(1.5.2-1.5.3) may be

expanded to give

ṅ = (A− κ)n− Bn2 (1.5.6)

ν + φ̇ = νc +
(ω − ν)

2γ
(A− Bn) (1.5.7)

Eqs.(1.5.6-1.5.7) are the semi-classical laser equations and many of the physical char-

acteristics of laser operation are explained by these equations. An important character-

istic is the lasing threshold condition. To understand this note the steady-state solution

(ṅ = 0) to Eqn.(1.5.6), gives n = 0, unless A > κ. The steady state intensity is finite

for A > κ and is given by

n0 = n =
A− κ

B (1.5.8)

Thus the system switches from zero to finite intensity when A = κ and this defines

the lasing threshold. Physically, at threshold the gain is equal to cavity losses. The

frequency determining Eqn.1.5.7 predicts a pulling of the oscillation frequency from the

passive cavity frequency towards line center. In steady-state (φ̇ = 0)

ν =
νc + Lω

1 + L
(1.5.9)

where L = κ
2γ

. The oscillation frequency ν is equal to an average value of νc and ω is

pulled closer to the atomic frequency ω. This is called mode-pulling.

In summary the semi-classical theory of laser, solved under the adiabatic approxi-

mation, explains the threshold behavior of the mean field and accounts for mode-pulling

of cavity frequency. Eq.(1.5.6) requires the presence of photons in the cavity, which can
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be amplified by the gain term A. It can not evolve from an initially empty cavity. The

quantum mechanical version of this equation contains an extra term A which accounts

for spontaneous emission into the cavity mode (see Chapter 4). This term arises due

to vacuum fluctuations appearing in the quantum theory of light and produces the first

photon for amplification. In the following chapter we extend this semi-classical theory

to explain the behavior of semiconductor lasers. The spontaneous emission into the las-

ing mode is included in the rate equations as an additional rate. The predictions of the

equivalent semiconductor rate equations is considered in detail by performing numerical

simulations.
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Chapter 2

Rate equation analysis of

semiconductor lasers

2.1 Introduction

Similar to an excited electron in a free two-level atom, an electron in the conduction

band of a solid can make a transition to an empty state in the valence band emitting a

photon in the process. When coupled to a resonant cavity this type of semiconductor

emitter can produce lasing behavior. Instead of an excited gas of atoms in a cavity, elec-

trons are injected into the conduction band and holes into the valence band by electrical

current. Lasing action was first observed in a current driven GaAs p − n diode main-

tained at liquid nitrogen temperature (77 K) [Ref.[19]]. Room-temperature operation

and other improvements soon followed [Ref.[20]]. The potential use of these devices

in commutation systems led to rapid developments in the field of semiconductor lasers.

Minimizing the size of these devices for low threshold and high efficiency operation led

to the development of microdisk lasers [Ref. [7]] and nano scale lasers [Ref. [40, 49]].

Typically, semi-classical rate equation theories are used to study semiconductor lasers.

Future development of smaller devices with smaller particle number [Ref. [31]] necessi-

tates new theories accounting for fluctuations and finite system size. Just how to extend

the description of lasers to this fluctuation dominated small particle number limit is the

subject of this thesis.
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The theory of semiconductor lasers is reviewed in this chapter [Ref. [24]]. The semi-

classical rate equations used in describing lasers is discussed and numerical simulation

is performed to study the static and dynamic characteristics of these lasers. The origin

of the various rates appearing in these equations is explained along with a comparison

with the rates appearing for the two-level atomic gain medium. Noise is accounted for

by adding noise terms. The limitations of this mean-field model in describing strong

fluctuation driven behavior in meso-scale systems is discussed. These equations form a

starting point for our master equation treatments of meso-scale lasers in Chapter 3.

2.2 Semiconductor rate equations

The semiconductor rate equations can be constructed by accounting for all the processes

occurring in the active region of the gain medium. Instead of active atoms, we have n

excited electrons in the conduction band which can transition to the valence band and

emit photons into the lasing mode. Thus the excited carrier number n and the lasing

photon number s are the quantities of interest and the rate equation for these two quan-

tities are developed. The injection current (pump) I supplies electrons. The excited

electrons n can decay to the valence band by radiative or non-radiative processes. The

radiative process, involving emission of photons, can occur by spontaneous or stimu-

lated transitions. Spontaneous emission accounts for both emission in the lasing and the

non-lasing optical modes. Stimulated emission can only occur in a single lasing mode.

Putting all these loss processes together, one can include a term in the rate equation of

the form n/τn, where τn is the lifetime of the excited electron. The rate n/τn is equal

to Anrn + Bn2 + Cn3, where Anr accounts for non-radiative processes like collisions.

Bn2 accounts for total spontaneous emission. A fraction β of total spontaneous emis-

sion feeds into the lasing mode and produces the first photons in an otherwise empty
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cavity (at T = 0 K) to be amplified. C is a nonlinear recombination constant. Stimu-

lated emission and absorption is accounted for by adding Gs, where the rate of optical

gain G for a bulk medium is given by,

G = Γa(n− n0)(1− εs) (2.2.1)

in which the confinement factor Γ accounts for the overlap of the field mode with the

gain medium. The differential optical gain with respect to carrier density is a and a linear

gain model is assumed. The gain saturation term εs is important at high intensities. The

carrier number at transparency is n0. Putting all these together, the rate equations for the

electrons and the photons are

dn

dt
=

I

e
− n

τn

−Gs

ds

dt
= Gs + βBn2 − κs (2.2.2)

where κ accounts for photon losses due to transmission and absorption and e is elec-

tronic charge.

These coupled equations can be solved using the fourth-order Runge Kutta (RK4)

technique described in Appendix B and transient and steady state behavior can be stud-

ied. Figure (2.1) plots typical steady-state and transient characteristics. Calculated

steady-state behavior shows the standard threshold behavior of large lasers along with

pinning of carriers. The temporal behavior in response to a step change in current shows

relaxation oscillations before steady-state is attained. The photon response follows that

of the electrons.
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Figure 2.1: Steady state and transient behavior from semiconductor laser rate equations. Steady-
state behavior : (a) electron number, n, as a function of injection current, I . (b) photon number, s, as a
function of injection current, I . System shows carrier pinning and lasing threshold behavior. Transient
response above threshold: Time evolution of (c) electrons, n (d) photons, s to a step change in current.
The current of 1 mA is switched on at 1 ns denoted by tstart. The system performs relaxation oscillation.
Parameters: V = (5 µm× 1 µm× 1 µm), Γ = 0.25, a = 2.5× 10−16 cm2 s−1, B′ = 10−10 cm3 s−1,
n0 = 1018 cm−3, αi = 10 cm−1, nr = 4, r = 0.999.

2.3 Gain and spontaneous emission in semiconductor

lasers

Typically the different rates used in the rate equations are derived using Fermi’s Golden

rule. The system is treated semi-classically, in the sense that the electrons are treated

quantum mechanically and the light classically. Full quantum treatments involving

quantization of the light field Ref.[[45]] produce similar results for large number of

particles. The photon rate equation can be compared with the rate equations derived
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for the atomic gain medium in the last chapter (Eq.(1.5.6)). The spontaneous emission

term, A, is proportional to the inversion and not n2. The quadratic dependence of the

spontaneous emission rate in a semiconductor comes from the band structure.

In thermal equilibrium, the Einstein relation can be written for two level atoms inter-

acting with radiation. Since steady-state transition rates between two levels 1 and 2 are

equal, we can write,

N2(B21U(ω) + A) = N1B12.U(ω) (2.3.1)

where N2 (N1) are populations of levels 2 (1), B21 and B12 are stimulated emission

and absorption rates between the two levels, A is the spontaneous emission rate and

U(ω) is the background electromagnetic energy density. Einstein’s relations in thermal

equilibrium are,

B12 = B21

A =
~ω3

π2c3
B12 (2.3.2)

where,

B12 =
πe2

3ε0~2
|〈2| r |1〉|2 (2.3.3)

is obtained by using Fermi’s Golden rule, for an atom interacting with radiation

Ref.[[24]]. Thus the rate of spontaneous emission for two-level atoms is given by AN2,

where A is determined from the above equations.

In contrast, in a semiconductor laser electrons make transitions from the conduction

band to the valence band of a direct band-gap semiconductor. In a direct band-gap

semiconductor, the maxima of the valence band and the minima of the conduction band
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line up. The occupation of the levels in each parabolic band is given by the Fermi-

Dirac distribution function f . So a vertical transition is possible, only if there is an

occupied state (f ) in the conduction band and an unoccupied state in the valence band

(1-f ). Hence probability of transition is the product Af(1 − f). Also instead of each

state in a two-level atom (being either excited or not), here we will have to sum over

free electron wave-vector states k, in order to get the total transition probability. For an

intrinsic semiconductor, this final summation over states produces the n2 dependence in

the expression of spontaneous emission.

For the sake of clarity, this expression is explicitly derived. Assuming a parabolic band,

the energy of an electron in the conduction band measured from the top of the valence

band is E2 = Eg + ~2k2

2m∗
e

and the energy of an electron in the valence band is E1 =

− ~2k2

2m∗
hh

where Eg is the band-gap energy, m∗
e is the effective electron mass and m∗

hh is

the effective heavy-hole mass. The energy due to a vertical electronic transition from

the conduction to valence band is

~ω = E2 − E1 =
~2k2

2
(

1

m∗
e

+
1

m∗
hh

) + Eg =
~2k2

2mr

+ Eg (2.3.4)

where 1
mr

= ( 1
m∗

e
+ 1

m∗
hh

) and mr is the effective reduced electron mass. It follows, that

the 3-dimensional density of states coupled by optical transition of energy ~ω is

D3(~ω) =
1

2π2
(
2mr

~2
)

3
2 (~ω − Eg)

1
2 (2.3.5)

The same value of k in the valence and conduction band is required for momentum

conservation. This is because the linear dispersion of light is almost vertical (ω =

ckopt/nr) compared to the quadratic dispersion of electrons in a band and so the photon

carries off negligible momentum. A clearer explanation can be found by deriving the
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exact form of the matrix elements between the transition states Ref.[[24]]. The Fermi-

Dirac distribution of a band α is

fαk =
1

eβ(Eαk−µα) + 1
(2.3.6)

where β is 1/kBT , the chemical potential is µa, electron energy is Eα = ~2k2

2mα
for a

band with effective electron mass mα. If the chemical potential is large and negative,

then Eαk− µα À kBT and in this limit we obtain the Maxwell-Boltzmann distribution,

fαk ' eβµαe−βEαk . Letting ε = β~2
2mα

, the carrier density in the band is given by,

nα = 4π

∫ ∞

0

2fαk2 dk

(2π)3
=

eβµα

π2

∫ ∞

0

e−εk2

k2dk = −eβµα

π2

∂

∂ε
(

∫ ∞

0

e−εk2

dk) =

1

4
(
2mαkBT

π~2
)

3
2 eβµα

(2.3.7)

where one makes use of the standard integral

∫ ∞

0

e−ax2

dx =
1

2

√
π

a
(2.3.8)

For total spontaneous emission, we have to calculate,

rspon−total =

∫
rspon(~ω)dω = r0

∫
D3(~ω)fefhhdω = r0

∑

k

fekfhhk (2.3.9)

We let, ε = β~2
2mr

, and calculate the sum of all vertical transitions,

∑

k

fekfhhk =
eβµeeβµhh

π2

∫ ∞

0

e−εk2

k2dk = eβµeeβµhh
1

4
(
2mrkBT

π~2
)

3
2 (2.3.10)
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From our previous calculation,

eβµα = 4nα(
π~2

2mαkBT
)

3
2 (2.3.11)

and because, from charge neutrality, ne = nhh = n, we have,

∑

k

fekfhhk = n24(
π~2mr

2memhhkBT
)

3
2 (2.3.12)

from which we may conclude that the total spontaneous emission is proportional to n2.

For low temperatures or high n, the spontaneous emission increases slower than n2,

because the requirement f ≤ 1 becomes important. The expression for optical gain

can be similarly obtained using Einstein’s relations and Fermi’s golden rule. If we con-

sider transition between two discrete levels 1 and 2 in the valence and conduction band

respectively, then the net absorption in presence of photons of energy ~ω =(E2 −E1) is

α =
Rstim

12 −Rstim
21

P (~ω) c
nr

=
B12P (~ω)f1(1− f2)−B21P (~ω)f2(1− f1)

P (~ω) c
nr

(2.3.13)

The equation is written in analogy with the two-level system and P (~ω) c
nr

represents

the net photon flux, where nr is the refractive index. B12 is determined by Fermi’s

golden rule in terms of the matrix elements as

B21 =
2π

~
|〈2| er |1〉|2 =

2π

~
|W21|2 (2.3.14)

On summing Eq.(2.3.13) over allowed transition states k, using density of states

D3(~ω), one can obtain the expression for semiconductor gain as,

g(~ω) = −α(~ω) =
2πnr

c~
|W21|2 1

2π2
(
2mr

~2
)

3
2 (~ω − Eg)

1
2 (fe + fhh − 1) (2.3.15)
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The condition of lasing or positive optical gain requires,

µ2 − µ1 > E21 (2.3.16)

which is known as the Bernard-Duraffourg condition. The expression of g(~ω) can be

plotted against energy, ~ω. From figure (2.2 b) we see the maxima of the gain increases

with electron density and the dependence is found to be linear. It is this maximum gain

energy which coincides with the cavity mode frequency. This is the reason for using a

linear model of gain the rate equation for electrons, n and photons, s.
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Figure 2.2: (a) Behavior of gain function with energy, ~ω for different carrier densities. The factors in
the legend multiplied by 1×1018 gives the carrier density. (b) Peak gain versus carrier density. Parameters
me = 0.07, mhh = 0.5, T = 300 K, Eg = 1.4 eV.

2.4 Noise in semiconductor lasers

The semiconductor laser rate equations can be modified slightly to Langevin form

dn

dt
=

I

e
− n

τn

−Gs + Fe(t)

ds

dt
= Gs + βBn2 − κs + Fs(t) (2.4.1)
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by adding external Gaussian random noise terms Fe(t) and Fs(t), which are described

by the following correlation functions,

〈Fe(t)Fe(t
′)〉 = (

I

e
+

n

τn

+ Gs)δ(t− t′)

〈Fs(t)Fs(t
′)〉 = (Gs + βBn2 + κs)δ(t− t′)

〈Fe(t)Fs(t
′)〉 = −(Gs + βBn2)δ(t− t′) (2.4.2)

where the cross-correlation in the last term indicates that the equations of n and s are

coupled and negative sign means they are anticorrelated. The prefactors in front of the

correlations are the variances of these Gaussian noise sources which are Markovian in

nature because of the delta function, δ(t − t′). The original rate equations (Eq.(2.2.2))

do not account for noise in the laser output due to fluctuations. Thus noise properties

of the system is studied by imposing external noise. The Fourier transform of the tem-

poral behavior, s(t), shows a peak at a characteristic frequency which increases with

increasing pump, similar to the relaxation oscillation frequency.
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Figure 2.3: Transient response in presence of noise above threshold: Time evolution of photons, s . The
current of 1 mA is switched on at 1 ns. Noise introduced after system attains steady-state. Parameters:
same as in Figure 1.

The approach to the study of noise by adding external Gaussian noise is valid in the

presence of large particle numbers. The treatment is not valid in the presence of a small
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number of photons near threshold. Thus the behavior of fluctuations around threshold in

meso-scale lasers considered in Chapter 3 can not be explained by this technique. Small

systems dominated by fluctuations is the physical scenario where the continnum mean-

field theories break down. To overcome this limitation, we develop a semi-classical

master equation theory in Chapter 3 which accounts for system probabilities and is better

suited to the study of fluctuation-driven behavior in small quantum systems.
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Chapter 3

Semi-classical treatment of meso-scale

lasers

3.1 Introduction

The physics determining operation of a conventional laser is quite well understood in

the thermodynamic limit. In this case there is a large number of excited states in the

system, the fraction of spontaneous emission, β, feeding into the lasing optical mode

is small (β ∼ 10−4), and there is a well-defined threshold between incoherent non-

lasing photon emission and coherent lasing photon emission. The approximate behavior

of these systems may be described using continuum mean-field rate equations. Beyond

these relatively crude models, quantum statistical theories of laser operation exist. When

evaluated in the large particle number limit they successfully reproduce the continuum

mean-field results and may be used to model particle number fluctuations and statistics

in the thermodynamic limit. Well established models of this type include Fokker-Plank

equations developed by Haken [Ref.[12]] and a density matrix approach by Scully and

Lamb [Ref.[13, 14, 15]]. The ensemble averages used in these models cannot be applied

to small systems involving a few particles. However, they do highlight the importance

of quantum fluctuations in relatively large lasers. For example, experiments show that

fluctuations in photon number play an essential role in determining the temperature

dependence of conventional laser diodes [Ref.[55, 56, 57]]. In these devices, and in

agreement with the Landau-Ginzburg theory of phase transitions, fluctuations enhance
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photon emission below threshold and suppress spontaneous emission. This behavior

occurs because the devices are large and operate in the thermodynamic limit. The sit-

uation is expected to be qualitatively different when the laser is small and the discrete

quantum nature of the particles in the system influences device behavior. It is this change

in the physics determining laser operation that we set out to address.

Recently a considerable amount of research has focussed on developing small lasers

with ultra-low threshold values [Ref.[7, 21, 22, 23]]. One idea employs the cavity-QED

effect [Ref.[5]] in which optical emission from an atom may be modified by changing

its electromagnetic environment. The threshold of single-mode lasers may be reduced if

the fraction of spontaneous emission, β, feeding into the lasing mode is increased. This

is achieved by inhibiting emission into non-lasing optical modes using high-Q micro-

cavities. The limiting case is β = 1 in which all the spontaneous emission feeds into the

lasing mode.

Typically, continuum mean-field rate equations have been employed to describe laser

diode behavior. The equations used are of the form (Eq.(2.2.2))

d〈n〉
dt

= −B〈n〉2 − aΓc

V nr

〈(n− n0)〉〈s〉+
I

e
, (3.1.1)

d〈s〉
dt

= βB〈n〉2 +
aΓc

V nr

〈(n− n0)〉〈s〉 − κ〈s〉, (3.1.2)

where 〈n〉 is the mean carrier number in the active volume V and 〈s〉 is the mean pho-

ton number in the optical cavity. In the equations, aΓc
V nr
〈(n − n0)〉〈s〉 is the stimulated

emission term for a bulk active region, c is the speed of light in vacuum, n0 is the carrier

number at optical transparency, a is the optical gain slope coefficient, Γ is the optical

confinement factor, and nr is the refractive index of the medium. The term −B〈n〉2
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describes spontaneous emission where B = B′/V and B′ is the spontaneous emis-

sion coefficient. Other contributions to the carrier recombination are often included in

Eq.(3.1.1). For example −Anr〈n〉 can be used to describe non-radiative recombination

and −(C/V 2)〈n〉3 is a nonlinear contribution to recombination. The term κ〈s〉 denotes

cavity loss rate of photons where κ = c
nr

(αi + 1
2Lc

ln( 1
r1r2

)), cavity length is Lc, mirror

reflectivity is r1 = r2 = r, and αi is the internal optical loss. The injection current is I

and e is the electron charge. As shown in Fig. 3.1, calculations using Eq.(3.1.1) predict

the threshold behavior in mean photon number < s > with injection current I smoothes

with increasing β and disappears entirely for β = 1.
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Figure 3.1: Continuum mean-field rate equation calculation of mean photon number, < s >, as a
function of injection current, I , for the indicated values of β showing transition to “threshold-less” lasing
in the limit β = 1. (a) log10 < s > as a function of log10I . (b) < s > as a function of I . Parameters:
V = (5 µm×1 µm×1 µm), Γ = 0.25, a = 2.5×10−16 cm2 s−1, B′ = 10−10 cm3 s−1, n0 = 1018 cm−3,
αi = 10 cm−1, nr = 4, r = 0.999.

Figure 3.2 shows images of semiconductor lasers where continuum mean-field rate

equations can be applied. Figure 3.2 (a) is a photograph of a conventional Fabry-Perot

laser diode. Cavity length is Lc = 300 µm, β = 5 × 10−5, and the active volume is

15 µm3. The horizontal metal stripe makes contact to p-type semiconductor, the sub-

strate is n-type, and six quantum wells form the active volume at the diode p-n junction.

The device parameters are that of an InGaAsP laser with emission at 1310 nm wave-

length [Ref.[24]]. Figure 3.2 (b) shows a microdisk laser [Ref.[25]] which has an active
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volume approximately 100 times smaller compared to the Fabry-Perot laser. The much

larger value of β = 10−1 for this device is achieved by reducing optical cavity size.

Figure 3.2: (a) Photograph from the top surface of a typical Fabry-Perot laser diode with Lc = 300 µm
and Ith = 3 mA. Photon cavity round-trip time in the device is 8 ps. The horizontal metal stripe
makes electrical contact to p-type semiconductor. Gold wire bonds connect to the anode of the current
supply driving the laser. The n-type semiconductor contact is made via the backside of the semiconductor
substrate. (b) Scanning electron microscope image of an optically-pumped microdisk laser. Image from
[Ref.[25]]. Disk diameter is 1.6 µm and the photon cavity round-trip time is 0.06 ps.

The continuum mean-field rate equations, useful for large and intermediate-size sys-

tems, is an approximate calculation of the first moment in the distribution of n and s. A

description using only the first moment < n > and < s > is not sufficient to describe the

behavior of lasers scaled to have small active volumes. Any model of very small lasers

should explicitly include fluctuations and be able to calculate higher-order moments in

the distribution of n and s.

In principle, a quantum theory of laser operation can incorporate these higher-order

effects. However, the approximations typically employed constrain them to either large-

scale systems or single atoms. The problem of a single two-level atom in an optical cav-

ity is solvable and has been extensively studied in quantum optics [Ref.[12, 15, 26, 27]].
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In fact, theoretical predictions for light emission from single atoms and single quan-

tum dots [Ref.[30, 31, 32]] in optical micro-cavities exhibit interesting features such

as self-quenching and squeezed light emission. Extension of this approach to include

multi-atom effects requires numerical computation. Unfortunately, the number of sys-

tem states scales as (2n)s, where n is the number of two-level atoms present and s is

the number of cavity photons. Thus, the problem becomes computationally challenging

with increasing number of atoms inside the cavity because the coefficient matrix is of

order (4n)s×(4n)s. Cases studied so far involve 1 or 2 atoms and solutions are obtained

numerically by truncating the coupled density matrix equations [Ref.[32]]. Treatments

involving arbitrary number of excited states include approximations of a reservoir level,

which excludes important phenomena appearing in the small-scale limit [Ref.[18]]. Sys-

tematic studies have also been performed for micro-masers where bulk and single parti-

cle effects (trapped states) have been investigated [Ref.[17]] but the maximum number

of atoms simultaneously present in the cavity was limited to 5. By modifying the injec-

tion technique [Ref.[33]], up to 100 atoms have been included in the cavity.

In this chapter we develop a description that quantizes particle energy and allows

study of meso-scale systems. Our approach captures the most significant quantum

effects in these small-scale systems. In particular, it allows exploration of quantum

fluctuations and its impact on the behavior of small laser diodes.

This chapter is organized as follows. In Section 3.2 we explore the behavior of small

lasers using a technique based on a random walk method. Description of the method

is followed by calculation of the steady-state characteristics of meso-scale devices.

Convergence with continuum mean-field rate equation results is achieved for large sys-

tems. Section 3.3 discusses the use of master equations to study similar systems. This

approach gives predictions in agreement with those of Section 3.2. Section 3.4 applies
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the methods of Section 3.2 and 3.3 to the study of transient characteristics. The algo-

rithm used in computation of this problem is discussed in detail. Section 3.5 addresses

aspects of experimental design and Section 3.6 is a summary and describes possible

future directions.

3.2 Random walk trajectory

To capture the physics dominating the meso-scale behavior of laser diode operation

when there is only a small number of excited states in the system we have used a tech-

nique based on a biased random walk or Monte-Carlo trajectory [Ref.[34]]. Quantiza-

tion of n discrete excited electronic states and s discrete photons is achieved by assuming

the system may be described by the state (n, s).

Figure 3.3: Transition rates in and out of quantum state (n, s). Positive signs indicate flow into the
state and negative signs flow out of the state. B is the spontaneous emission coefficient, −Gns =
(aΓcn/V nr)s is the stimulated emission rate in the system at photon energy ~ω, −As = (aΓcn0/V nr)s
is the stimulated absorption rate, n0 is the transparency carrier number, c is the speed of light in vacuum,
Γ is the overlap of the optical field intensity with the gain medium, a is the gain slope coefficient, and nr

is the refractive index of the active volume V . The total optical loss rate from the Fabry-Perot cavity is
κs = c

nr
(αi + 1

2Lc
ln( 1

r1r2
))s, where r1 = r2 is the mirror reflectivity, αi is the internal loss, and Lc is

the cavity length. I is the injection (pump) current and e is the electron charge.
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Consider the system at time t = 0 containing n excited two-level electronic states

each separated in energy by ~ω and s photons each of energy ~ω. Figure 3.3 illustrates

the transitions in and out of state (n, s). The term −βBn2 describes the spontaneous

emission of photons involving transitions from state (n, s) to state (n− 1, s + 1) where

B = B′/V and B′ is the spontaneous emission coefficient. −sGn describes stimulated

emission of photons from state (n, s) to state (n− 1, s + 1) where Gn is the stimulated

emission coefficient. −(1 − β)Bn2 is the decay of electrons into non-lasing photons

via transitions from state (n, s) to state (n − 1, s). Current +I denotes injection of

electrons causing transitions from state (n, s) to state (n + 1, s). −As is stimulated

absorption of photons involving transitions from state (n, s) to state (n+1, s−1) where

A is the stimulated absorption coefficient. −κs describes the decay of cavity photons in

which transitions from state (n, s) to state (n, s − 1) occur, where κ is the optical loss

coefficient.

The system evolves by transitioning between neighboring states via the processes

indicated in Fig. 3.3. The time constants, τi, of all possible independent transi-

tions involving the state (n, s) are calculated. The next time step is calculated using

ti = −τiln(RAND) where the subscript labels the channel and RAND is a uniformly

distributed random number between zero and one. The transition with the lowest ti is

chosen and the system makes a move to the new state in time ti. The process involves

a series of biased random transitions on a grid whose trajectories sample the continuous

probability function Pn,s for each state (n, s). Steady-state probability distribution for

a particular injection current is obtained by averaging over multiple trajectories where

each trajectory consists of millions of time steps. The probability of state (n, s) is Pn,s.

This probability is estimated from the relative time spent in state (n, s). This technique

is ideal for parallel computing as it mostly involves repeated sampling without any large
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memory requirements. Each processor can independently perform calculations for each

pump current and produce the entire steady-state characteristic in the end.

Fluctuations and correlations are expected to have a strong effect on the behavior of

small lasers. Figure 3.4 shows steady-state characteristics for lasers with different active

volumes. Continuum mean-field rate-equation results are compared with those obtained

from the biased random walk technique. All the devices considered operate in the limit

where strong coherent effects, such as Rabi oscillations, are absent [Ref.[15, 39]].

Figures 3.4 (a) and (b) show results for a Fabry-Perot laser diode with β = 5× 10−5

and active volume V = 33.6 µm3. The expected classical laser threshold behavior

and carrier pinning above threshold is observed. Total optical output power in mW at

an operating emission wavelength of 1310 nm can be determined by multiplying the

photon number by 5.2× 10−5.

Figures 3.4 (c) and (d) give results for a micro-disk laser with active volume

V = 0.12 µm3. Optical output power in µW at 1310 nm wavelength is obtained by

multiplying the photon number by 7.1 × 10−3. The steady-state characteristics show

that the change in slope of < s > around the phase transition region is considerably

smoothed due to the large value of β = 0.1.

Figures 3.4 (e) and (f) give the steady-state characteristics of a laser where the active

volume has been reduced to V = 10−4 µm3 and β = 10−4. Suppression of lasing

is observed along with de-pinning of carriers in the limit of small active volume and

small β values. Optical output power in nW at a wavelength of 800 nm is obtained by

multiplying the photon number by 0.186. Increasing β for this small cavity as shown in

Figures 3.4 (g) and (h), provides a better agreement with mean-field predictions. The

mean photon number matches closely. The mean carrier number however deviates by a

small amount around the threshold region.
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Figure 3.4: Steady-state characteristics. Mean photon and electron number in the device plotted
as a function of injection current. Continuum mean-field rate equation calculation (dashed line - R.E.)
compared with results from our random trajectory Monte-Carlo technique (solid line - M.C.). (a, b) Fabry
- Perot laser. (c, d) Microdisk laser. (e, f) Laser with meso-scale active volume. Parameters for (a) and (b):
V = (300 µm× 0.8 µm× 0.14 µm), Γ = 0.25, a = 2.5× 10−16 cm2 s−1, B′ = 10−10 cm3 s−1, Anr =
2× 108 s−1, C = 10−29 cm6 s−1, n0 = 1018 cm−3, αi = 40 cm−1, nr = 3.3, r = 0.32, β = 5× 10−5.
Parameters for (c) and (d): V = (π × (0.8 µm)2 × 0.06 µm), Γ = 0.25, a = 2.5 × 10−16 cm2 s−1,
B′ = 10−10 cm3 s−1, Anr = 2 × 108 s−1, C = 10−29 cm6 s−1, n0 = 1018 cm−3, αi = 10 cm−1,
nr = 4, r = 0.999, β = 10−1. Parameters for (e) , (f), (g) and (h): V = (0.1 µm × 0.1 µm × 10 nm),
Γ = 0.25, a = 2.5 × 10−18 cm2 s−1, B′ = 10−10 cm3 s−1, n0 = 1018 cm−3, αi = 1 cm−1, nr = 4,
r = 1− 10−6, β = 10−4 for (e) and (f) and β = 10−1 for (g) and (h).
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Carrier de-pinning near threshold may be investigated further by accounting for

spontaneous emission of photons into a non-lasing channel. The (1 − β) term (Fig-

ure 3.3) populates another channel containing s′′ photons which decay at the same rate

as the cavity photons. This channel does not participate in any stimulated photon pro-

cesses.
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Figure 3.5: Time evolution of electrons and photons calculated by a random trajectory. (a) Current, I
= 9.6 nA. (b) I = 48 nA. (c) I = 72 nA. (d) I = 192 nA. The inset shows discrete step changes in photon
number with time. Parameters are as in Fig. 3.4 (e) and (f) : V = (0.1 µm×0.1 µm×10 nm), Γ = 0.25,
a = 2.5×10−18 cm2 s−1, B′ = 10−10 cm3 s−1, n0 = 1018 cm−3, αi = 1 cm−1, nr = 4, r = 1−10−6,
β = 10−4.

Figure 3.5 shows trajectories calculated in the time-domain for different injection

currents for a very small active volume laser with parameters as in Figs. 3.4 (e) and

(f). The spontaneous emission terms are also included in the calculation. The calculated

time-domain data in Figs. 3.5 (a) and (b) show bursts of photons because of the presence

of large fluctuations and the injection current is not great enough to sustain continuous
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lasing. With increasing injection current, longer lasting photon bursts result in a double-

peaked average electron distribution. This is well illustrated by the data in Fig. 3.5

(c). For operation near threshold switching occurs between two different characteristic

system states. Figure 3.5 (d) is an example of strong lasing with quantized photon

fluctuations about a mean value 〈s〉 = 136. This trajectory compares closely to the

Langevin trajectories generated by adding Gaussian noise to the continuum mean-field

rate equations (Eq. 2.4.1). This analogy is considered in greater detail in Section 1.5

B. The average output power from both cavity mirrors is around 25 nW at an operating

wavelength of 0.8 µm. In this case s′′ = 9.5.

There is less noise in carrier number n in Fig. 3.5 (a) when there are essentially only

electrons in the system and very few lasing photons. As illustrated in Fig. 3.5 (c), when

both photons and electrons are in the system the electron noise is enhanced because

photon noise couples into the electron distribution. When the cavity empties of photons

the number of electrons increases but the noise decreases. This is because noise coupled

into the electron system from the photons is no longer present.

The Fano-factor, F may be used to quantify photon fluctuations.

F = σs
2/ < s > (3.2.1)

where σs is the standard deviation in photon number. The phase transition in a con-

ventional laser is accompanied by large photon fluctuations and this quantity peaks

sharply near lasing threshold, Ith. For large injection currents, I À Ith, the Fano-factor

approaches unity, corresponding to a Poisson distribution. For small active volumes

the sharp transition is replaced by a broad peak in the Fano-factor in the vicinity of the

threshold and F > 1, indicating a non-Poisson distribution.
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Figure 3.6: Comparison of steady-state laser characteristics for three different active volumes. (a)
Normalized mean photon number versus current. (b) Normalized mean electron number versus current.
(c) Normalized Fano-factor versus current. (d) Normalized spontaneous emission photon number versus
current. (i) Results for a large active volume, (ii) an intermediate sized active volume, (iii) a small active
volume (Fig. 3.5). The calculations for the large active volume device matches the continuum mean-field
rate equations data closely. The current values are normalized by dividing by the respective threshold
currents predicted by continuum mean-field rate equations (Ith−i = 112 µA, Ith−ii = 320 nA, Ith−iii =
12.8 nA). Normalization constants, N are: Mean photon number, Nsi = 1, Nsii = 350, Nsiii = 800.
Mean electron number, Nni = 1, Nnii = 607, Nniii = 21594. Mean spontaneous emission photon
number, Ns ′′i = 1, Ns ′′ii = 370, Ns ′′iii = 855. Fano factor, NFi = 1, NFii = 1, NFiii = 10.
Parameters: Vi = (5 µm × 1 µm × 1 µm), Vii = (5 µm × 0.1 µm × 10 nm), Viii = (0.1 µm ×
0.1 µm× 10 nm), Γi,iii = 0.25, Γii = 0.05, ai,ii = 2.5 × 10−16 cm2 s−1, aiii = 2.5 × 10−18 cm2 s−1,
B′ = 10−10 cm3 s−1, n0 = 1018 cm−3, αi = 10 cm−1 for (i,ii), αi = 1 cm−1 for (iii), nr = 4,
ri,ii = 0.999, riii = 1− 10−6 and β = 10−4.

In Fig. 3.6 the steady-state laser characteristics of (i) a large active volume device

(V = 5 µm3), (ii) an intermediate volume (V = 5×10−3 µm3), and (iii) a small volume

(V = 10−4 µm3) are shown. The data are normalized to the large active volume device
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continuum mean-field rate-equation predictions for 〈n〉 and 〈s〉. Figure 3.6 (a) com-

pares 〈s〉 as a function of I between different cavities and convergence with the contin-

uum mean-field rate equations is achieved for the largest cavity. Lasing is increasingly

suppressed with the reduction of active volume. The normalized Fano-factor as a func-

tion of normalized current exhibits a peak around the threshold region. As expected,

the largest active volume device exhibits the sharpest threshold behavior. In general,

the peak identifies the presence of strong fluctuations and non-Poisson photon statistics

around threshold. Carrier de-pinning accompanies photon fluctuations as demonstrated

by Fig. 3.6 (b). Figure 3.6 (d) shows enhanced spontaneous emission across threshold

resulting from the extra carriers contributed by carrier de-pinning. An explanation of

lasing suppression, enhanced spontaneous emission and de-pinning of carriers may be

found in the time-domain data illustrated in Fig. 3.5 (c). The system fails to lase con-

tinuously in this region and switches between the lasing and non-lasing state. Once the

system shuts down, it waits for the next spontaneous emission event to re-initiate lasing.

Lasing, being predominantly a stimulated process, requires the presence of photons in

the cavity. A larger active volume with a larger number of electrons has more sponta-

neous emission events which prevents lasing shut down. A smaller active volume, with

lesser likelihood of such events, experiences suppression of continuous lasing. Lasing

shut down is accompanied by de-pinning of carriers which in turn enhances spontaneous

emission.

3.3 Master equations

The predictions of the biased random walk technique can be verified independently by

use of coupled deterministic differential equations that quantize particle number. Pre-

viously, such master equations have been solved to explore steady-state behavior in the
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limit of cavity quantum electrodynamics for which β = 1 [Ref.[36, 16]]. Biased random

walk trajectories in (n, s) space can be used to sample solutions of master equations.

The equation describing time evolution of probability Pn,s of states (n, s) in a single-

mode semiconductor laser diode with photon emission at energy ~ω is of the form

dPn,s

dt
= − κ(sPn,s − (s + 1)Pn,s+1)− (sGnPn,s − (s− 1)Gn+1Pn+1,s−1)

− (sAPn,s − (s + 1)APn−1,s+1 − βB(n2Pn,s − (n + 1)2Pn+1,s−1)

− (1− β)B(n2Pn,s − (n + 1)2Pn+1,s)− I

e
(Pn,s − Pn−1,s)

where the active volume is V and the device is driven by current I . The term

−βBn2Pn,s(t) describes spontaneous emission of photons involving transitions from

state (n, s) to state (n− 1, s + 1) where B = B′/V and B′ is the spontaneous emission

coefficient. −sGnPn,s(t) describes stimulated emission of photons from state (n, s) to

state (n−1, s+1) where Gn is the stimulated emission coefficient. −(1−β)Bn2Pn,s(t)

is the decay of electrons into non-lasing photons via transitions from state (n, s) to state

(n−1, s). −IPn,s(t) corresponds to injection of electrons causing transitions from state

(n, s) to state (n+1, s). −AsPn,s(t) is stimulated absorption of photons involving tran-

sitions from state (n, s) to state (n + 1, s − 1) where A is the stimulated absorption

coefficient. −κsPn,s(t) describes the decay of cavity photons in which transitions from

state (n, s) to state (n, s− 1) occur, where κ is the optical loss coefficient.

The time evolution of Pn,s can be solved by integrating Eq.(3.3.1). Pn,s may also

be solved under steady-state conditions by truncating the system at values of n and s

which are much larger than the steady-state mean values predicted by the continuum

mean-field rate equations [Ref.[36, 16]]. The equations governing the mean behavior

are derived by averaging the master equations over all possible states, after multiplying

by n and s. This gives

44



d〈n〉
dt

= −B〈n2〉 − aΓc

V nr

〈(n− n0)s〉+
I

e
, (3.3.1)

d〈s〉
dt

= βB〈n2〉+
aΓc

V nr

〈(n− n0)s〉 − κ〈s〉, (3.3.2)

which reduces to the standard continuum mean-field rate equations if the correlations

factorize such that 〈(n − n0)s〉 = 〈(n − n0)〉〈s〉 and 〈n2〉 = 〈n〉2. The second approx-

imation is valid in the case of narrow symmetric single peaked distributions in n. A

system involving a small number of particles, experiences strong fluctuations in parti-

cle number and correlations between n and s are significant. Hence, such mean-field

approximations are not valid, leading to predictions of mean behavior that are different

from a more complete probabilistic picture.

Figure 3.7 illustrates some of the essential differences by showing the results of cal-

culating the steady-state characteristics with master equations (M.E.) and continuum

mean-field rate equations (R.E). The 〈ns〉 correlation differs most from its factorized

product 〈n〉〈s〉 around threshold (Fig. 3.7 (d)) and the master equations accounting for

these correlations differs significantly in its predictions. In particular it leads to suppres-

sion of lasing by increasing the apparent threshold current (Fig. 3.7 (a)) and de-pinning

of carriers (Fig. 3.7 (b)). Assuming the value of current at the Fano-factor peak may be

used as a measure of laser threshold [Ref.[39]], Fig. 3.7 (c) gives a threshold Ith = 45 nA

which is 4.5 times greater than the value of Ith = 10 nA predicted by continuum mean-

field rate equations. The differences reduce as one scales to a larger number of particles

in the limit of conventional laser operation and this was indeed verified by master equa-

tion calculations performed for a system with parameters similar to Fig. 3.7 but with a

higher value of β. Figures 3.7 (e) and (f) show the probability distribution of photons Ps

and electrons Pn for different stages of laser operation. At low injection currents Ps is

45



0 50 100
0

50

100

Current, I (nA)

M
ea

n 
ph

ot
on

 n
um

be
r,

 <
s>

 

 

M.E.
R.E.

I
th

(R.E.)

(a)

0 50 100
100

300

500

Current, I (nA)

M
ea

n 
el

ec
tr

on
 n

um
be

r,
 <

n>

 

 

M.E.
R.E.

(b)

0 50 100
0

20

40

60

Current, I (nA)

F
an

o 
fa

ct
or

,  
σ s2 /<

s>

 

 

M.E.(c)

0 50 100
0

1

2

3

Current, I (nA)

C
or

re
la

tio
n

 

 

<ns>
<n><s>
<n><s> − R.E.

x 104

(d)

0 150 300
0

1

2

Photon number, s
P

ro
ba

bi
lit

y,
 P

s 
 

 

9.6 nA
48 nA
72 nA
192 nA

x 10−2

(e)

0 400 800
0

2

4

Electron number, n

P
ro

ba
bi

lit
y,

 P
n

 

 

9.6 nA
48 nA
72 nA
192 nA

x 10−2

(f)

Figure 3.7: Steady-state characteristics. (a) Calculated mean photon number as a function of current
showing that master equations (M.E.) predict suppression of lasing threshold relative to continuum mean-
field rate equation (R.E.) calculations. Suppression in lasing is due to quantum fluctuations. (b) Calculated
mean electron number as a function of current. M.E. show carrier de-pinning due to quantum fluctuations.
(c) Fano-factor F = σ2

s/ < s > as a function of current, I . (d) Electron-photon correlation and product
of means versus current. (e) Probability of photons for different currents. (f) Probability of electrons for
different currents. Parameters as in Fig. 5.

bimodal with a large probability for occupation of the photon ground-state, s = 0. This

indicates that quantum fluctuations cause lasing emission to turn off. The probability

distribution for Ps and Pn near Ith is bimodal confirming the existence of the two char-

acteristic system states. Only when I À Ith do Ps and Pn become single-peaked. The

probability distribution for these injection currents obtained from the master equations

are in agreement with results of the trajectory method shown in Fig. 3.5. In the long-

time limit, trajectories in the (n, s) plane are found to converge to the predictions of the

master equations (Fig. 3.8).

Computational convenience dictates the choice of parameters used for solving the

master equations. Realistic parameters increase number of particles which in turn leads

to a large number of probability states. For total number of particles N , the number of
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probability states is D = (N + 1)(N + 2)/2 and this grows as N2 for large N . For

N = 1000 the probability vector has a length 0.5 × 106 . Matrix inversion for steady-

state calculation and multiplication for time evolution becomes difficult when the size

of the coefficient matrix (D2) increases significantly beyond this value.

Despite the use of small values of n and s, the underlying physics in which quan-

tum fluctuations suppress lasing and carriers are de-pinned remain. This is confirmed by

calculations using the trajectory method which was developed to connect with large sys-

tems described by realistic parameters. The technique verifies master equation results

and predicts similar behavior in small systems with experimentally accessible parame-

ters (see Section 3.5).

Similar to the trajectory method, the master equations can be modified to include

spontaneous emission of photons into a non-lasing channel. The spontaneous emission

channel does not participate in any stimulated processes and so avoids the correlation

effects that strongly influences lasing emission. The master equation for probability

Pn,s,s′′(t) is (4) with additional terms (1−β)Bn2Pn,s,s′′ corresponding to decay of elec-

trons into photons of the non-lasing channel, causing a transition from state (n, s, s′′)

to (n − 1, s, s′′ + 1) and κs′′Pn,s,s′′ denoting decay of non-lasing photons, causing a

transition from state (n, s, s′′) to (n, s, s′′ − 1). The average value for n and s obtained

using Pn,s,s′′(t) gives equations Eqs.(3.3.1) respectively. The average for s′′ is

d〈s′′〉
dt

= (1− β)B〈n2〉 − κ〈s′′〉 (3.3.3)

Large fluctuations and correlations in particle number in the finite sized quantum system

lead to carrier de-pinning near threshold and the increased average number of carriers

results in enhanced spontaneous emission because of the (1− β)Bn2 dependence. This
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is verified by the trajectory method (Fig. 3.6 (d)). A similar plot using master equation

calculations is avoided for numerical reasons. The system has a larger number of prob-

ability states due to the presence of this additional channel of spontaneously emitted

photons. However a similar idea may be demonstrated by studying the role of β in dis-

tributing the total emission between two modes. Larger β enhances spontaneous emis-

sion into the lasing mode and prevents lasing shut down. Reducing β has the opposite

effect. Figure 3.8 demonstrates this for a small active volume. As β is reduced, while

keeping the current constant, the emission switches from being dominated by lasing to

spontaneous emission. This leads to lasing suppression. The peak at higher electron

number in the bimodal distribution corresponding to zero lasing photons gives rise to

enhanced spontaneous emission. The distribution of spontaneous emission as shown in

Figs. 3.8 (c) and (d) is symmetric in the absence of diagonal processes illustrated in the

state diagram shown in Fig. 3.3. The active volumes used for calculations whose results

are shown in Figs. 3.8 (a - d) are chosen for computational convenience. The same

calculations have been repeated using the trajectory method for a larger system and a

similar behavior is observed with change of β.
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Figure 3.8: Steady-state probability distribution for electrons (n), photons (s), spontaneous emission
(s′′) for different values of β and a fixed current I = 10 electron/ns (= 1.6 nA) for (a), (b), (c), and (d) and
72 nA for (e), (f), (g), and (h). (a) and (e) β = 1. (b) and (f) β = 10−1. (c) and (g) β = 10−2. (d) and (h)
β = 10−4. Parameters for (a), (b), (c), and (d) are as in Fig. 5 but with V = (1 µm× 1 nm× 1 nm) and
αi = 0.19 cm−1. Parameters for (e), (f), (g), and (h) are as in Fig. 5. The color (gray) scale is log10.
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3.4 Transient dynamics in small lasers

To solve the transient master equation the entire time-evolution is divided into equal

time intervals, the duration of which is determined by the inverse of the pumping rate.

This allows only a single electron to enter the active volume on average in a given time

interval. If we start with an empty device, i.e. P0,0(t = 0) = 1, the terms which will

be important in the first time interval are P0,0, P0,1, P1,0. This happens because a system

of n electrons and s photons can only undergo processes and make single quantum

transitions as described in Fig. 3.3. In matrix form, the process is described as follows:

The coupled first order differential equations written in matrix form is




˙P00

˙P01

˙P10


 =




− I
e

κ(1) (1− β)B12

0 −κ(1)− A(1) βB12

I
e

A(1) −B12







P00

P01

P10


 (3.4.1)

We integrate the set of master equations involving these terms using the fourth-order

Runge-Kutta method for the first interval. Only one electron is introduced in this inter-

val. It may be introduced uniformly over the period of this interval starting from the cold

cavity initial condition P00 = 1 and under the influence of the pump as in the current

case. It can also be introduced at a random particular instant in the interval. This method

of injection does not alter the steady state finally attained by this technique and helps in

truncating the infinite coupled set of differential equations into a finite set, containing

variables which are important in the first interval. In the next interval the maximum
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number of particles is 2. So terms such as P1,1, P0,2, P2,0 will be important along with

the terms of the previous interval. So in matrix form we have,




˙P00

˙P01

˙P10

˙P02

˙P11

˙P20




=




− I
e

κ (1− β)B 0 0 0

0 −κ− A− I
e

βB 2κ (1− β)B 0

I
e

A −B − I
e

0 κ 4(1− β)B

0 0 0 −2(κ− A) G1 + βB 0

0 I
e

0 2A −κ−G1 −B 4(1− β)B

0 0 I
e

0 A 4(1− β)B







P00

P01

P10

P02

P11

P20




(3.4.2)

At the time of inclusion in the matrix the new terms P02, P11 and P20 have value zero.

They evolve due to their coupling with the existing elements P00, P01 and P10 in the

next interval. Note that the probabilities with the maximum number of total particles,

N = n + s in a given interval, is not allowed to transition to a state with another extra

excitation. With the addition of the nth electron, n + 1 additional probability states are

added and the coefficient matrix grows as D2. In matrix form
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


˙P00

˙P01

˙P10

˙P02

.

˙Pn−1,1

˙Pn0




=




− I
e

κ.1 (1− β)B.12 0 .. 0 0

0 −κ.1− A.1− I
e

βB.12 κ.2 .. 0 0

I
e

A.1 −B.12 − I
e

0 .. 0 0

0 0 0 −κ.2− A.2 .. 0 0

. . . . . . .

0 0 0 0 .. . (1− β)Bn2

0 0 0 0 .. A.1 −Bn2







P00

P01

P10

P02

.

Pn−1,1

Pn0




(3.4.3)

The system of equations is such that total probability is conserved in every step

as more electrons enter the system. Iterations are continued by adding more particles

until the system attains a steady-state probability distribution. The steady-state attained

agrees with the one obtained from the truncated master equations solved under steady-

state conditions. For a given interval the process is similar to a continuous-time Markov

process where the allowed states are the states of continuous-time Markov chains. So

in every step the size of the matrices grow. In MATLAB, construction of these matri-

ces, specifically the coefficient matrix in the differential equations is time consuming.

Comparison of the above matrix equations show that certain parts of the matrix remain
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unchanged, few get modified (by addition of extra terms) and completely new terms are

added in the new rows and columns introduced in every consecutive step to accommo-

date an extra particle. For example in Eqn (3.4.1) and Eqn (3.4.2), the term C11 of the

coefficient matrix stays unchanged, C33 increases due to addition of the pump term and

new coefficients are added for the new equations in row and column (4-6). Since we are

only dealing single particle excitation or processes, equations of N particles are related

to those of N + 1 and N − 1. So introduction of a new particle only influences the

very last set of equations. This knowledge is used to make the algorithm faster. The

unchanged part of the matrix or vector is kept the same, and new parts are appended. So

only n + 1 additional rows and columns are added to a matrix instead of constructing
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the total matrix of size D2. The state vectors containing the probability elements are

arranged in the following order,




P00

P01

P10

P02

P11

P20

.

.

P0,n

p1,n−1

.

.

Pn−2,2

Pn−1,1

Pn0




(3.4.4)

So we see for N total particles, there are N + 1 total states, for which N = n + s.

The photon number is reduced from N to zero in steps of 1, and the excitation num-

ber is correspondingly increased, as the probability states Pns are arranged vertically

in a matrix. As mentioned, equations for a system of N particles only connects to the

equation for N + 1 and N − 1 particles. The specific ordering of the vector elements,

helps in allocating the coefficients in their equations. In allocating the coefficient matrix,

each element Pns is considered and the corresponding row is filled with the coefficients

of its equation. The arrangement helps save time in building these matrices instead of
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employing a search algorithm to find the position along the row where the coefficient

should be placed. For example, due to the arrangement, the terms Pn−1,s+1, Pn,s and

Pn+1,s−1 are adjacent. Hence, the positions of the coefficients for stimulated absorp-

tion, stimulated emission and spontaneous emission into the lasing mode can be exactly

determined, as the flow of probability in these processes are between the above men-

tioned states only. The cavity loss term, the non-lasing mode spontaneous emission

term and the pump term, which reduces the total particle number N by 1, are located

N +1 = n+s+1 elements away (left if decreasing, right if increasing) from the element

with n + s = N particles, Pns. Look for example the allocation of the allowed coeffi-

cients of the equation for P11 in Eq.(3.4.2) when the second particle is introduced. The

elements corresponding to the different physical processes influencing P11 are located

in the coefficient matrix in the way stated above.

As mentioned earlier, the terms with the maximum particle number, N , in a given

matrix is not allowed to be pumped any higher. So when the N + 1 particle is added the

equations for the N particles are modified. The pump loss is included in the equations

for the N particles, specifically in the self-term. If Pns is located in the nth row then

this the coefficient, Cnn in the coefficient matrix. This term includes coefficients of

loss terms from the state Pns representing flow of probability out of the state. A specific

example of this is the case of the 1 and 2 excitation particle case shown previously where

the term C33 gets modified on adding the 2nd particle after the 1st one.

The technique for the steady state solution is similar. From Eqn (3.4.3), in steady

state we have
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


0

0

0

0

0

0

0




=




− I
e

κ.1 (1− β)B.12 0 .. 0 0

0 −κ.1− A.1− I
e

βB.12 κ.2 .. 0 0

I
e

A.1 −B.12 − I
e

0 .. 0 0

0 0 0 −κ.2− A.2 .. 0 0

. . . . . . .

0 0 0 0 .. . (1− β)Bn2

0 0 0 0 .. A.1 −Bn2







P00

P01

P10

P02

.

Pn−1,1

Pn0




(3.4.5)

This is a set of linear homogenous algebraic equations in the steady-state probabilities.

The non-triviality of the solution can be fixed by the conservation of probability. We

know that if one equation is removed, the rest are independent. We remove the last

equation and use the condition of probability conservation to calculate the steady-state
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value. Of course the value of n for which the equations are truncated should be much

greater than the steady-state rate equation predictions.




0

0

0

0

0

0

1




=




− I
e

κ.1 (1− β)B.12 0 .. 0 0

0 −κ.1− A.1− I
e

βB.12 κ.2 .. 0 0

I
e

A.1 −B.12 − I
e

0 .. 0 0

0 0 0 −κ.2− A.2 .. 0 0

. . . . . . .

0 0 0 0 .. . (1− β)Bn2

1 1 1 1 1 1 1







P00

P01

P10

P02

.

Pn−1,1

Pn0




(3.4.6)

Note that the last equation states conservation of probabilities.

Figures 3.9 (a) and (b) show the time evolution of 〈n〉 and 〈s〉 for a small laser

operating above threshold. Factorization of the correlation 〈ns〉 is not appropriate as

reflected by the fact that the continuum mean-field rate equation results do not converge

to the master equation solution. Figures 3.10 (b) and (c) show that at any point in time

the instantaneous probability Pn,s carries information about the path taken. In contrast,

averaging in the continuum mean-field rate-equation calculation removes information

about the system’s history.
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Strong correlations and fluctuations affect the average response of a small laser to a

step change in injection current and slows down the system in general. Increasing the

active volume, keeping other parameters fixed reduces the difference with the mean-field

predictions (Fig. 3.9 (c) and (d)).
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Figure 3.9: Transient behavior of mean electron number and photon number for a step change in current
from I(t < 0) = 0 to I(t ≥ 0) = 100 electrons/ns (= 16 nA) for (a, b) and I(t ≥ 0) = 400 electrons/ns (=
64 nA) for (c, d). (a) Mean photon number as a function of time. (b) Mean electron number as a function
of time. The dot at the last time point denotes the mean calculated from the probability distribution
obtained by the steady-state technique. Parameters as in Fig. 5 but with V = (0.1 µm× 10 nm× 10 nm)
and β = 10−1. (c) Mean photon number as a function of time. (d) Mean electron number as a function
of time. Parameters as in Fig. 5 but with β = 10−1.

3.4.1 Large signal analysis

A large signal analysis may be performed by starting from the system ground-state and

observing the response to a step change in injection current. The time delay, td may

be calculated by starting from an empty device (n, s = 0) and noting the time taken

to reach half the steady-state photon number. The mean time, 〈td〉MC calculated by
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Figure 3.10: Transient behavior of mean electron number and photon number for a step change in
current from I(t < 0) = 0 to I(t ≥ 0) = 100 electrons/ns (= 16 nA). (a) Evolution of mean photon number
as a function of mean electron number, calculated from continuum mean-field rate equations. (b) Pn,s

calculated at time t = 1.25 ns and indicated by arrow labeled 1 in (a). (c) Pn,s calculated at time t = 5ns
and indicated by arrow labeled 2 in (a). Parameters as in Fig. 5 but with V = (0.1 µm× 10 nm× 10 nm)
and β = 10−1. The color (gray) scale is log10.
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Figure 3.11: Comparison of time delay, td between continuum mean-field rate equations and random
walk approach. (a) Transient behavior of mean photon number for a step change in current from I(t <
0) = 0 A to I(t ≥ 0) = 16 nA. Time delay 〈td〉 comparison for (b) V = 5 × 10−4 µm3, (c) V =
5× 10−2 µm3 (d) V = 5 µm3. Parameters: (a) V = (0.1 µm× 10 nm× 10 nm), Γ = 0.25, a = 2.5×
10−18 cm2 s−1, B′ = 10−10 cm3 s−1, n0 = 1018 cm−3, αi = 1 cm−1, nr = 4, r = 1−10−6, β = 10−1.
(b) V = (5 µm × 0.01 µm × 0.01 µm), Γ = 0.25, a = 2.5 × 10−16 cm2 s−1, B′ = 10−10 cm3 s−1,
n0 = 1018 cm−3, αi = 10 cm−1, nr = 4, r = 0.999, β = 10−4. (c) V = (5 µm × 0.1 µm × 0.1 µm),
other parameters same as in (b). (d) V = (5 µm× 1 µm× 1 µm), other parameters same as in (b).
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averaging, td, for multiple trajectories obtained using the trajectory method, is found to

be in close agreement with that predicted by master equations. This is denoted by the

dot in Fig. 3.11 (a) which shows the agreement and a mean time-delay 〈td〉MC that is

greater than the predictions of the continuum mean-field rate equation theories, 〈td〉RE.

These calculations are carried out for injection currents which support continuous lasing

and hence are far away from the fluctuation dominated regime (Fig. 3.5 (c)). The peak

of the Fano-factor for the lasers considered in Fig. 3.11 (b), (c), and (d) occur around

0.6 µA, 8 µA, and 150 µA respectively and injection current chosen for this analysis

is higher than that. The Fano-factor peak gives an estimate of the threshold for these

small devices [Ref.[39]]. Figures 3.11 (b), (c), and (d) show a comparison of time

delay for three different active volumes and convergence with continuum mean-field

rate equations is achieved for the largest volume (d). The deviation from the mean-field

calculations reduces with increase in active volume size.
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3.4.2 Small-signal analysis
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Figure 3.12: (a) Time trajectory calculated using the random walk technique. (b) Time trajectory from
the Langevin equations using correlated noise sources. (c) Relative intensity noise (RIN) as a function
of frequency. Calculation using Langevin equations (dashed line), random walk calculation (solid line).
Calculations are normalized to peak in spectrum. Electron injection current = 400 µA (dark curve), 800
µA (gray curve), 1.32 mA (light gray curve). Parameters same as Fig. 3.11(d).

Above threshold the biased random walk trajectory in the time domain (Fig. 3.5 (d))

appears similar to the trajectories produced by Langevin equations as described in

[Ref.[37]]. The Fourier transform of this data is computed to obtain small-signal rel-

ative intensity noise (RIN) data. Such time-domain analysis is not possible using master

equations.

Figures 3.12 (a) and (b) show the time-trajectories calculated using our trajectory

method and Langevin equations respectively. The fluctuations in photon number is

noticeably larger in Fig. 3.12 (a) compared to (b). Our trajectory calculations show

larger fluctuations and hence larger Fano-factors and this trend is observed in smaller

active volume lasers as well.

The Langevin equations consider correlated noise terms which are artificially forced

to be Gaussian in nature. This gives rise to considerably lower values of Fano-factor

in the threshold region. The Langevin approach arbitrarily assumes near Poisson dis-

tributions which is physically unrealistic in the correlated system we consider. The

distributions obtained from the trajectory technique are not biased to be Gaussian and

are, in fact, super-Poissonian with a much larger Fano-factor even when the system is
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lasing continuously. For example, for a current of 400 µA which is 2.7 times threshold

current, Langevin equations give a Fano-factor of about 12 and our trajectory method

gives a Fano-factor of near 270.

The response in the frequency domain was compared with the RIN data obtained

from Langevin equations with cross-correlated noise sources [Ref.[37]]. The frequency

response calculated using the two models agrees around the RIN peak and when the

system is in the lasing state (Fig. 3.12 (c)). The peak in frequency increases with electron

injection current. There are, however, differences at frequencies below the RIN peak.

These can be brought into closer agreement by increasing the magnitude of the Langevin

noise terms. The calculations involving large data sets of time trajectories required for

the Fourier transforms can be conveniently handled by parallel computing, where each

processor performs calculation on a section of the data set. It integrates that section of

the data for all frequencies and in the end the processors can combine their data to get

the Fourier transform for all frequencies.

3.5 Experimental Design

The behavior of lasers with very small active volumes can be studied using semiconduc-

tor nanowire [Ref.[40]], quantum pillar [Ref.[41]], or other geometries [Ref.[42, 43]].

The active medium may be confined inside a high-Q photonic crystal or other optical

cavity. Reducing the size of the laser is generally accompanied by an increase in β.

However, small β is an important factor leading to lasing suppression and might explain

why suppression of lasing by quantum fluctuations has not been observed in experi-

ments.

We have performed calculations to find experimentally accessible conditions where

the impact of quantum fluctuations on laser performance may be observed. Figure 3.13
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(a) and (b) shows calculations for a system of three nano-wires confined in a photonic

crystal medium. Parameters chosen are similar to those considered by [Ref.[40]]. The

lasing suppression is seen to disappear with the increase in β. The carrier de-pinning

effect however persists longer and can be observed in spontaneous emission. So one of

the key directions for design is to have strong confinement for the single lasing mode

along with significant emission into the non-lasing modes. For a nano-wire system this

would mean strong confinement in the axial direction for the laser mode with sponta-

neous emission in the lateral directions. Reduction in β by increasing the optical cavity

length is also considered in Fig. 3.13 (c) and (d). Other than an overall change in the

threshold value, these laser designs show a similar trend with change of β.
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Figure 3.13: Comparison of steady-state characteristics for different β values. β = 10−3 (solid),
β = 10−2 (dashed), β = 10−1 (dot), β = 1 (dash-dot). β = 10−4 (solid - dark line) is included in (c) and
(d) for a larger size cavity. The graphs display random trajectory calculations. Parameters for (a) and (b)
: V = 3× (1 µm × 5 nm × 5 nm), Γ = 0.01, a = 12.3× 10−16 cm2 s−1, B′ = 5.5× 10−10 cm3 s−1,
Anr = 0.91 × 109 s−1, C = 0.5 × 10−29 cm6 s−1, n0 = 1018 cm−3, αi = 0.0010 cm−1, nr = 3.5,
r = 0.997, ε = 0.01 × 10−18 cm3. Parameters for (c) and (d) : V = 3 × (6 µm × 5 nm × 5 nm),
Γ = 0.004, αi = 5 cm−1, r = 0.995, others same as in (a) and (b). Net optical output power in µW at an
operating wavelength of 1310 nm may be determined by multiplying the photon number by 0.039 for (a)
and (b), 0.0109 for (c) and (d).

The threshold current, Ith for the laser considered in Fig. 3.13 (c) and (d) is shown in

Fig. 3.14 as a function of cavity length, Lc. In this case, changing the cavity length alters

the active volume. The rate equation data is compared with the random walk trajectory

calculation. Only the case with β = 10−4 is considered. The peak of the Fano-factor is

used to locate the threshold current in the random trajectory calculations. Threshold cur-

rent is larger than the predictions of continuum mean-field rate equations due to lasing
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suppression. The light output characteristics of the laser with Lc = 6 µm is considered

in the inset. This has a threshold current around 2 µA and optical output power is in

the µW range. As expected, the pinned carrier number has a linear dependence on the

cavity length, Lc.
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Figure 3.14: Variation of threshold current with cavity length. Upper curve (solid) are results of
random trajectory calculations and lower curve (dashed) are results of continuum mean-field rate equation
calculations. β = 10−4 for main figure. Inset is comparison of steady-state characteristics for different
β values. β = 10−4 (solid - dark line), β = 10−3 (solid), β = 10−2 (dashed), β = 10−1 (dot), β = 1
(dash-dot). This is the same plot as Fig. 3.13 (c) but in terms of output power for an operating wavelength
of 1310 nm. Parameters same as in Fig. 3.13 (c).

Fig. 3.15 is a plot of steady-state characteristics using a log10 scale. These corre-

spond to the linear plot of Fig. 3.13 (c). Strong quantum fluctuations around threshold

smooth the non-lasing to lasing transition compared to a more abrupt cross-over pre-

dicted by the continuum mean-field theories. This is seen for the small β cases where

the effects of lasing suppression becomes apparent.

3.6 Conclusion and outlook

In conclusion, our calculations illustrate the importance of quantum fluctuations in

determining the steady-state and transient response of a laser when there are a small
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Figure 3.15: Comparison of steady-state characteristics for different β values. β = 10−4 (solid - dark
line), β = 10−3 (solid), β = 10−2 (dashed), β = 10−1 (dot), β = 1 (dash-dot). Thicker lines are results
of random walk calculation, thinner lines are from the continuum mean-field calculations. (a) Intra-cavity
mean photon number, (b) output optical power versus injection current. Parameters same as in Fig. 3.13
(c) and (d).

number of particles in the system. Quantum fluctuations can suppress lasing threshold,

enhance spontaneous emission, and create a non-Poisson probability distribution for n

discrete excited electronic states and s discrete photons. Correlations between n and s

are found to damp the average dynamic response of laser emission. Fluctuations in the

finite sized quantum system behave differently from lasers in the thermodynamic limit.

According to the conventional Landau-Ginzburg theory of phase transitions, fluctuations

in the large particle number limit will enhance lasing below threshold. In meso-scale

systems the opposite is true, quantum fluctuations suppress lasing.

The master equations and the random walk technique generate statistics of the pho-

ton field but do not include phase as they only quantize energy. Phase fluctuations

contain information about line-width of the lasing mode. Inclusion of phase in a fully

quantum mechanical model solved by brute-force methods is challenging due to the

extremely large state-space for the system. A possible approach is to solve for a few

atoms in the optical cavity and then attempt to develop techniques capable of solving

the problem for larger numbers of particles based on the physical insight gained. This

approach is adopted in making a connection with the semi-classical predictions, in the
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next two chapters. The exact solution of the quantum mechanical problem of a few emit-

ters and photons though cumbersome is manageable computationally. The solutions are

compared with the semi-classical random walk calculations. The novel predictions of

lasing suppression and carrier de-pinning from the semi-classical theory are recovered

in presence of inhomogeneity. New understanding regarding the parameter β, which

influences the existence of these new effects in the semi-classical theory is obtained

from the full quantum picture. The following chapter consists of a review of the existing

quantum theories of atom-field interaction and the useful Hamiltonians and formalisms

required for the development of our model.
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Chapter 4

Quantum theory of light-matter

interaction - a review

4.1 Introduction

This chapter provides a brief review of light-matter interaction from a fully quantum per-

spective following the work of Sully and Zubairy [Ref. [15]]. Quantization of electro-

magnetic fields starting from the classical picture is discussed. The Jaynes-Cummings

Hamiltonian, describing the interaction of matter with radiation field is derived under

the dipole and rotating wave approximations. This Hamiltonian is analytically solvable

and is widely used in quantum optics. The closed system of matter and radiation field

is generalized to include interactions with external reservoirs in order to describe pro-

cesses involving loss and pumping. The modification of the density matrix equations,

under the inclusion of reservoir terms is discussed. Finally these elements are used to

lay out the basic foundations for the quantum theory of lasers. The approximations

made in this derivation and the final results of the full quantum theory are discussed and

compared with the semi-classical case (see Chapter 1). This chapter explains in detail

the approximations made in developing the theory of meso-lasers in Chapter 5 and helps

us in distinguishing the meso-case from the ordinary large laser reviewed in this chap-

ter. The notations used in the derivations are similar to the work of Scully and Zubairy

[Ref. [15]].
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4.2 Quantization of the electromagnetic field

The classical electric and magnetic fields in free space can expanded in terms of a plane

wave basis as

E(r, t) =
∑

k

ε̂kEkαke
−iνkt+ik.r +

∑

k

ε̂kEkα
∗
ke

iνkt−ik.r (4.2.1)

H(r, t) =
1

µ0

∑

k

k× ε̂k
νk

Ekαke
−iνkt+ik.r +

1

µ0

∑

k

k× ε̂k
νk

Ekα
∗
ke

iνkt−ik.r (4.2.2)

where the summation is over the allowed values of wave vector k = (kx, ky, kz). νk is

the frequency of mode k, ε̂k is a unit polarization vector, αk is a dimensionless amplitude

and

Ek = (
~νk

2ε0V
)1/2 (4.2.3)

This form of the expansion is obtained by considering a cavity of side L. Periodic

boundary conditions are used and so

kx =
2πnx

L
, ky =

2πny

L
, kz =

2πnz

L
, (4.2.4)

where nx, ny, nz are integers (0,±1,±2...). A set of numbers (nx, ny, nz) defines a

mode of the electromagnetic field. The transverse nature of the field requires

k.ε̂k = 0 (4.2.5)
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The radiation field is quantized by replacing the scalar amplitudes, αk and α∗k with

creation and annihilation operators a†k and ak with commutation relation [ak, a
†
k] = 1.

The quantized electric and magnetic fields are of the form

E(r, t) =
∑

k

ε̂kEkake
−iνkt+ik.r +

∑

k

ε̂kEka
†
ke

iνkt−ik.r (4.2.6)

H(r, t) =
1

µ0

∑

k

k× ε̂k
νk

ε̂kEkake
−iνkt+ik.r +

1

µ0

∑

k

k× ε̂k
νk

ε̂kEka
†
ke

iνkt−ik.r (4.2.7)

The classical Hamiltonian for the field is

HF =
1

2

∫

V

dτ(ε0E
2 + µ0H

2), (4.2.8)

On substituting E and H in the Hamiltonian HF , the total energy separates out into

the energy of the individual modes. The energy of each mode defined by k resem-

bles the energy of a classical simple harmonic oscillator. To quantize the problem in

the oscillator case, the conjugate variables of position qj and momentum pj of the jth

oscillator is treated as operators and the Heisenberg uncertainty condition is imposed

([qj, pj′ ] = i~δj,j′). The operators a and a† are obtained from canonical transformation

of the variables q and p. The energy of the quantized electromagnetic field may now be

written as

H = ~
∑

k

νk(a
†
kak +

1

2
) (4.2.9)
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The quantized electric field operator is generally separated into its positive and negative

frequency parts as

E(r, t) = E(+)(r, t) + E(−)(r, t) (4.2.10)

where

E(+)(r, t) =
∑

k

ε̂kEkake
−iνkt+ik.r (4.2.11)

E(−)(r, t) =
∑

k

ε̂kEka
†
ke

iνkt−ik.r (4.2.12)

so that E(+)(r, t) contains only annihilation operators and E(−)(r, t) conatins only cre-

ation operators.

4.3 Jaynes-Cummings Hamiltonian

The Hamiltonian for the problem of an atom interacting with an eletric field (E) is

H = HA + HF − er.E (4.3.1)

where HA and HF are the Hamiltonians of the atom and the radiation field. r is the

position vector of the electron. This is the mimimal-coupling Hamiltonian (Eqns.(1.2.6-

1.2.9)) written for the fully quantum mechanical case where the energy of the field is

included separately. The difference from the semi-classical case arises from the fact that
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E is no longer a simple scalar field but a quantum operator and the energy of the field

needs to be explicitly included. HF is (as in Eq.(4.2.9)),

HF =
∑

k

~νk(a
†
kak +

1

2
) (4.3.2)

where a†k and ak are the creation and annihilation operators for mode k of the photon

field.

The terms HA and er can be represented in terms of the atomic energy eigen states (|i〉)
as

HA =
∑

i

Ei |i〉 〈i| =
∑

i

Eiσii (4.3.3)

and

er = e
∑
i,j

|i〉 〈i| r |j〉 〈j| =
∑
i,j

Pijσij (4.3.4)

where the completeness of the set of eigenstates is utilized (
∑

i |i〉 〈i| = 1).

σij is the atom transition operator and Pij = e 〈i| r |j〉 is the electric dipole transition

matrix element. Under the dipole approximation, which assumes the field to be uniform

over the entire atom, the electric field E at the position of the point atom located at the

origin is,

E =
∑

k

ε̂kEk(ak + a†k) (4.3.5)
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where Ek = (~νk/2ε0V )
1
2 . For simplicity a linear polarization basis is considered and

the polarization unit vectors, ε̂k are taken to be real.

Substituting Eq.(4.3.2-4.3.5) into Eq.(4.3.1) we get

H =
∑

k

~νka
†
kak +

∑
i

Eiσii + ~
∑
i,j

∑

k

gij
k σij(ak + ak

†) (4.3.6)

where

gij
k = −Pij.ε̂kEk

~
(4.3.7)

Eq.(4.3.6) does not include the zero point energy and Pij is assumed real for simplicity.

For the case of a two-level atom, since Pab = Pba, we have

gk = gk
ab = gk

ba (4.3.8)

Under this simplification the complete Hamiltonian is

H =
∑

k

~νka
†
kak + (Eaσaa + Ebσbb) + ~

∑

k

gk(σab + σba)(ak + a†k) (4.3.9)

The second term in Eq.(4.3.9) can be written as

(Eaσaa + Ebσbb) =
1

2
~ω(σaa − σbb) +

1

2
(Ea + Eb) (4.3.10)

where the substitutions (Ea − Eb) = ~ω and σaa + σbb = 1 have been made. The

constant (Ea + Eb)/2 is dropped. To obtain the familiar form of the Jaynes-Cummming
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Hamiltonian, Eq.(4.3.9) is rewritten in terms of the atomic creation and annihilation

operators σ+ and σ−. These are given by

σz = σaa − σbb = |a〉 〈a| − |b〉 〈b|

σ+ = σab = |a〉 〈b|

σ− = σba = |b〉 〈a| (4.3.11)

where σ+, σ− and σz satisfies the spin- 1/2 algebra of Pauli matrices. σz is the inversion

operator.

The Hamiltonian (Eq.(4.3.9)) can now be rewritten as,

H =
∑

k

~νka
†
kak +

1

2
~ωσz + ~

∑

k

gk(σ+ + σ−)(ak + a†k) (4.3.12)

The interaction energy (Eq.(4.3.12)) consists of four terms. The term, σ−a†k describes

the process in which an atom looses its energy by making a transition and a photon in

mode k is created. σ+ak describes the reverse process. σ+a†k describes a process in

which an atom is excited and a photon is created resulting in an energy gain of 2~ω.

σ−ak similarly describes an energy loss of 2~ω. The energy nonconserving terms are

dropped to create what is called the rotating wave approximation. Semi-classically this

corresponds to ignoring the high frequency terms. The resulting Hamiltonian is

H =
∑

k

~νka
†
kak +

1

2
~ωσz + ~

∑

k

gk(σ+ak + σ−a†k)

H = H0 + H1 (4.3.13)
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where H0 represents the free Hamiltonian and H1 represents the interaction term. This is

the Jaynes-Cummings Hamiltonian describing the interaction of a two-level atom with

a multi-mode field. The special case of the single mode field, considered next, is exactly

solvable and is widely studied in quantum optics. This model is also used in our study

of meso-scale lasers and saturable absorbers in Chapter 5.

4.3.1 Single mode Jaynes-Cummings Hamiltonian

The form of the Hamiltonian, (Eq.(4.3.13)) simplifies for a single-mode quantized field

of frequency ν and the interaction H1 to

H1 = ~g(σ+a + σ−a†) (4.3.14)

Generally this problem is solved in the interaction picture and in that case the inter-

action V is given by

V = eiH0t/~H1e
−iH0t/~ (4.3.15)

Using the Baker-Hausdoff relation

eαABe−αA = B + α[A,B] +
α2

2!
[A, [A,B]] (4.3.16)

it can be seen that

eiνa†atae−iνa†at = ae−iνt eiωσzt/2σ+e−iωσzt/2 = σ+eiωt (4.3.17)

And, using the above equations we have,
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V = ~g(σ+aei∆t + a†σ−e−i∆t)

∆ = ω − ν (4.3.18)

The Schrödinger equation in the interaction picture for the state |ψ〉 describing the

atom-field system is

i~
∂ |ψ〉
∂t

= V |ψ〉 (4.3.19)

This problem is analytically solvable and shows Rabi oscillations between the pho-

ton field and the atom. The nature of the oscillation is qualitatively different from semi-

classical predictions and depends on initial conditions. For an initial coherent state

of photons (Poisson distribution), the envelope of oscillation is not constant - it col-

lapses and rebuilds. Also according to the semi-classical theory an atom in the excited

state cannot make a transition to the lower level in the absence of a driving field, as fre-

quency of the Rabi oscillation is proportional to the incident field amplitude. In the fully

quantum-mechanical treatment, the transition becomes possible because of spontaneous

emission caused by vacuum fluctuations.

Figure 4.1 shows Rabi oscillations in 1 and 4 emitter systems coupled to a single

cavity mode. The calculations are performed using techniques discussed in Chapter

5 and the parameters chosen are similar to those of Figure 5.3. In general, emitter-

field system is coupled to external reservoirs and the Rabi oscillations decay with time.

The plots compare these oscillations for different values of the incoherent pump below

and around lasing threshold. For the emitter initially in the excited state and an empty

cavity, the frequency of Rabi oscillations is given by the emitter-cavity coupling g. As

76



shown in [Ref. [32]] adding emitters effectively makes the cavity coupling g stronger.

It increases as
√

Ne, where Ne is the number of emitters. For 4 emitters the period of

oscillations roughly doubles as shown by Figure 4.1. With the increase of incoherent

pump, the coherent oscillation dies off. The pump values shown in Figure 4.1 (c) and

(d) are normalized. The actual pump energy flowing is obtained by multiplying with

Ne. Normalized pump denotes the energy flowing into individual emitters.
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Figure 4.1: Scaling of Rabi oscillations for multi-emitter systems. Single emitter case. (a) Mean
photon number in lasing mode in log10 scale. (b) Net inversion of emitters. 4 emitter case. (c) Mean
photon number in lasing mode in log10 scale. (d) Net inversion of emitters. The legend shows the
different normalized pump values. Dark solid line (P = 0.1 meV), dashed line (P = 0.5 meV), light dash-
dotted line (P = 2 meV). Initial state of system consists of all emitters in excited state and zero cavity
photons. Parameters: Emitter-cavity coupling, g = 1 meV, spontaneous emission into non-lasing modes,
γ = 0.1 meV, photon energy, ω = 1000 meV, cavity loss, κ = 0.1 meV.
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4.4 General reservoir theory

The emitter-field system considered in the previous section is closed in the sense that

energy remains conserved. This allows the system to perform Rabi oscillations. How-

ever realistic matter-field systems involve loss mechanisms to outside reservoirs. These

reservoirs are treated as large systems of harmonic oscillators. We present here a brief

review of the general reservoir theory. We consider in general a system denoted by S

interacting with a reservoir denoted by R. The combined density operator is ρSR. The

reduced density operator of the system is obtained by tracing over the reservoir vari-

ables, i.e.,

ρS = TrR(ρSR) (4.4.1)

In presence of system-reservoir interaction V (t) the equation of motion for ρSR is

i~ρ̇SR = [V (t), ρSR(t)] (4.4.2)

Integration of this equation gives

ρSR(t) = ρSR(ti)− i

~

∫ t

ti

[V (t′), ρSR(t′)]dt′ (4.4.3)

where ti denotes time when the interaction starts. Substituting ρSR(t) back into

Eq.(4.4.2), gives

ρ̇SR(t) = − i

~
[V(t), ρSR(ti)]− 1

~2

∫ t

ti

[V(t), [V(t′), ρSR(t′)]]dt′ (4.4.4)
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The system and the reservoir are independent, when V = 0, and the density operator ρSR

separates into a product ρSR(t) = ρS(t)⊗ ρR(ti). The reservoir is large and assumed to

be in equilibrium. In the limit of weak interaction, we expect a solution of the form

ρSR(t) = ρS(t)⊗ ρR(ti) + ρc(t) (4.4.5)

where ρc(t) is of higher order in V . Eq.(4.4.1), requires TrR[ρc(t)] = 0

Substituting ρSR(t) from Eq.(4.4.5) into the integrand of Eq.(4.4.4) and retaining terms

up to order V 2, we have

ρ̇S = − i

~
TrR[V(t), ρS(ti)⊗ ρR(ti)]−

1

~2
TrR

∫ t

ti

[V(t), [V(t′), ρS(t′)⊗ ρR(ti)]]dt′ (4.4.6)

The reduced density operator ρS(t) determines the statistical properties of the system.

The presence of ρS(t′) in the integrand of Eq.(4.4.6) states that ρS(t) depends on its

past history from t = ti to t′. Typically, the reservoir is an extended open system with

a large number of degrees of freedom (modes, phonons, etc.) and this leads to a delta

function δ(t− t′) in the integral. Hence ρS(t′) can be replaced by ρS(t) and the history

independent process is called Markovian. The assumption is reasonable since damping

destroys memory of the past. Eq.(4.4.6) now becomes

ρ̇S = − i

~
TrR[V(t), ρS(ti)⊗ ρR(ti)]−

1

~2
TrR

∫ t

ti

[V(t), [V(t′), ρS(t)⊗ ρR(ti)]]dt′ (4.4.7)

This may now be applied to the description of spontaneous emission of an atom and

decay of a cavity mode due to partially reflecting mirrors.
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4.4.1 Spontaneous emission

The interaction of an atom with a single cavity mode in a closed environment leads to

Rabi oscillations where the energy is transferred back and fourth between the emitter

and the optical field. However, spontaneous decay of an atom is an irreversible process

where it loses its energy to the field and this situation may be explained by a simple

model in which the atom is coupled to a reservoir of simple harmonic oscillators. The

two-level atom is the system (ρS = ρatom) in this case and it interacts with a reservoir,

R, of simple harmonic oscillators. An oscillator of frequencies νk = ck is described by

creation (annihilation) operators b†k (bk) . In the interaction picture and rotating wave

approximation the Hamiltonian is

V(t) = ~
∑

k

gk[b
†
kσ−e−i(ω−νk)t + σ+bke

i(ω−νk)t] (4.4.8)
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where σ− = |b〉 〈a| and σ+ = |a〉 〈b| are the creation and annihilation operators for the

atom. Using interaction energy V , in Eq.(4.4.6), we obtain

ρ̇atom = −i
∑

k

gk〈b†k〉[σ−, ρatom(ti)]e
−i(ω−νk)t

−
∫ t

ti

dt′
∑

k,k′
gkgk′([σ−σ−ρatom(t′)− 2σ−ρatom(t′)σ− + ρatom(t′)σ−σ−]

×e−i(ω−νk)t−i(ω−νk′ )t
′〈b†kb†k′〉+ [σ−σ+ρatom(t′)− σ+ρatom(t′)σ−]

×e−i(ω−νk)t+i(ω−νk′ )t
′〈b†kbk′〉+ [σ+σ−ρatom(t′)− σ−ρatom(t′)σ+]

×ei(ω−νk)t−i(ω−νk′ )t
′〈bkb†k′〉) +

−i
∑

k

gk〈bk〉[ρatom(ti), σ+]ei(ω−νk)t

−
∫ t

ti

dt′
∑

k,k′
gkgk′([ρatom(t′)σ+σ+ − 2σ+ρatom(t′)σ+ + σ+σ+ρatom(t′)]

×ei(ω−νk)t−i(ω−νk′ )t
′〈bk′bk〉+ [ρatom(t′)σ−σ+ − σ+ρatom(t′)σ−]

×ei(ω−νk)t+i(ω−νk′ )t
′〈b†k′bk〉+ [ρatom(t′)σ+σ− − σ−ρatom(t′)σ+]

×e−i(ω−νk)t−i(ω−νk′ )t
′〈bk′b†k〉) (4.4.9)

where the expectation values refer to the initial state of the reservoir. The thermal reser-

voir is considered in the problem, with the state of the reservoir described by,

ρR = Πk[1− exp(− ~νk

kBT
)] exp(−~νkb

†
kbk

kBT
) (4.4.10)
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where kB is the Boltzmann constant and T is the temperature. The expectation val-

ues required for Eq.(4.4.9), can be obtained using ρR. On substituting the expectation

values, we obtain

ρ̇atom = −
∫ t

ti

dt′
∑

k

g2
k([σ−σ+ρatom(t′)− σ+ρatom(t′)σ−]n̄ke

−i(ω−νk)(t−t′)

+[σ+σ−ρatom(t′)− σ−ρatom(t′)σ+](n̄k + 1)ei(ω−νk)(t−t′)

+[ρatom(t′)σ−σ+ − σ+ρatom(t′)σ−]n̄ke
i(ω−νk)(t−t′)

+[ρatom(t′)σ+σ− − σ−ρatom(t′)σ+](n̄k + 1)e−i(ω−νk)(t−t′)) (4.4.11)

where the thermal average boson number is

n̄k =
1

exp( ~νk

kBT
)− 1

(4.4.12)

The sum over k may be replaced by an integral for a continuum of reservoir modes,

∑

k

→ 2
V

(2π)3

∫ 2π

0

dφ

∫ π

0

dθ

∫ ∞

0

k2dk (4.4.13)

where V is the quantization volume. The integrations in Eqn.(4.4.11) carried out using

the Wieskopf-Wigner approximation [Ref.[15]] gives

ρ̇atom = −n̄th
Γ

2
[σ−σ+ρatom(t)− σ+ρatom(t)σ−]

−(n̄th + 1)
Γ

2
[σ+σ−ρatom(t)− σ−ρatom(t)σ+]

−n̄th
Γ

2
[ρatom(t)σ−σ+ − σ+ρatom(t)σ−]

−(n̄th + 1)
Γ

2
[ρatom(t)σ+σ− − σ−ρatom(t)σ+] (4.4.14)
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where n̄th = n̄k0 , (k0 = ω/c) and

Γ =
1

4πε0

4ω3P2
ab

3~c3
(4.4.15)

is the atomic decay rate. The value of gk (Eq.(4.3.7)) is used in deriving the expression

of Γ . The equation for the atomic density matrix elements derived from Eq.(4.4.14) for

zero temperature n̄th = 0 is

ρ̇aa = −Γρaa

ρ̇ab = −Γ

2
ρab

ρ̇bb = Γρaa (4.4.16)

ρ̇aa + ρ̇bb = 0 implies conservation of probability. Also spontaneous decay being an

incoherent process decays the coherence between the two levels, ρab.

4.4.2 Cavity-mode decay

Cavity-mode decay can be treated in a similar way. A radiation field of frequency ν

inside a cavity described by operators a and a† is in interaction with oscillator modes

of a reservoir described by operators bk and b†k. For transmission losses they actually

represent the field outside the cavity. The interaction Hamiltonian for this problem is of

the form,

V (t) = ~
∑

k

gk[b
†
kae−i(ν−νk)t + a†bkei(ν−νk)t] (4.4.17)
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and can be solved by assuming the reservoir to be at thermal equilibrium. The equation

for the reduced density operator of the field is obtained by replacing the atomic operators

σ− with a.

ρ̇ = −n̄thκ[aa†ρ− 2a†ρa + ρaa†]−

(n̄th + 1)κ[a†aρ− 2aρa† + ρa†a] (4.4.18)

where n̄th = n̄k0 is the number of quanta at frequency ν in the thermal reservoir and κ

is the decay constant. At zero temperature (n̄th = 0),

ρ̇ = −κ[a†aρ− 2aρa† + ρa†a] (4.4.19)

Transmission loss, κ, is related to the Q factor of the cavity by κ = ν/Q.

4.5 Laser theory

In contrast to the semi-classical theory of lasers the quantum nature of light is considered

in developing a quantum theory. The density matrix of the coupled atom-field system

is solved under interaction with external reservoirs. The model considered for a single

mode laser is described as follows. Atoms are pumped randomly from the ground state

|g〉 to the excited state |a〉 at rate λa. The state |a〉 also denotes the upper state lasing

transition and it decays to state |b〉 emitting a lasing photon in the process. Both states

|a〉 and |b〉 decay to states |c〉 and |d〉 at rates γa and γb which in turn decay to state |g〉 at

rates γc and γd. The rates γc, γd À γa, γb. To simplify the problem, we set γa = γb = γ.

The lasing mode is also tuned to resonance with the atomic transition. Damping of the

cavity mode is considered through its interaction with the modes of an external reservoir.

Physically it represents transmission losses through partially transmitting mirrors. The
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pumping and other damping mechanisms are considered in a phenomenological way

similar to the semi-classical theory.

The Hamiltonian describing interaction of the active atoms with the single-mode laser

field is

V =
∑

i

~g(σ+
ia + a†σ−i) =

∑
i

Vi (4.5.1)

where σ+
i = (|a〉 〈b|)i is the creation operator for the ith atom. The problem is solved

in the interaction picture. The frequency dependent terms in the Hamiltonian dissapear

in absence of detuning. The equation for laser field density matrix, obtained by tracing

out the atomic variables is

ρ̇nn′ = − i

~
Tratoms[V, ρ]n,n′ + (Lρ)n,n′ (4.5.2)

where from Eq.(4.4.19)

(Lρ)n,n′ = −κ

2
(n + n′)ρnn′ + C

√
(n + 1)(n′ + 1)ρn+1,n′+1 (4.5.3)

Damping of the lasing mode has been included in the above equation following the

treatment in the previous section.

The equation for the lasing density matrix (Eq.(4.5.2)) contains terms like
∑

i ρ
i
an,bn+1(t, ti). ti represents the time of injection of the ith atom, as it starts inter-

acting with the field. These elements are analogous to the elements of the population

matrix introduced in Chapter 1. In the case of the quantum theory, the population matrix

is defined as

ρan,bn+1(t) =
∑

i

ρi
an,bn+1(t, ti) (4.5.4)
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Elements ραn,α′n+1(t) with projections on to the atomic states, (α = a, b..g) can be

solved in the adiabatic approximation which assumes that the variation of the field in

negligible in the atomic lifetimes (1/γ). Their values when substituted in Eq.(4.5.2)

yields the equation of motion of the reduced density matrix of the field.

ρ̇nn′ = −(
N ′

nn′A
1 +Nnn′B/A)ρnn′ + (

√
nn′A

1 +Nn−1,n′−1B/A)ρn−1,n′−1

−C
2
(n + n′)ρnn′ + C

√
(n + 1)(n′ + 1)ρn+1,n′+1 (4.5.5)

where A is the linear gain coefficient and is equal to 2rag
2/γ2, B is the self-saturation

coefficient, B = 4g2A/γ2. ra is the effective pumping rate given by γλa/(γ +λa). N ′
nn′

and Nnn′ are dimensionless factors given by

N ′
nn′ =

1

2
(n + 1 + n′ + 1) +

(n− n′)2B
8A

Nnn′ =
1

2
(n + 1 + n′ + 1) +

(n− n′)B
16A (4.5.6)

The linear gain and self-saturation coefficients are similar to the coefficients of the semi-

classical theory considered in Chapter 1 for the case of zero detuning. Eq.(4.5.5) consti-

tutes the basic equation of a laser. The diagonal density matrix elements ρnn represents

the probability p(n) of n photons in the field. The equation for the diagonal elements is,

ṗ(n) = −(
(n + 1)A

1 + (n + 1)B/A)p(n) + (
nA

1 + nB/A)p(n− 1)

−Cnp(n) + C(n + 1)p(n + 1) (4.5.7)

In these equations, diagonal elements couple to diagonal elements and in general only

off-diagonal elements with the same difference (n− n′) are coupled.
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To connect to the mean-field semiclassical result of Chapter 1 (Eq.(1.5.6)), we derive

an equation for the mean number of photons, < n >. For near threshold operation,

B < n > /A ¿ 1, we obtain (after expanding the two denominators on the right hand

side)

〈ṅ〉 =
∞∑

n=0

n
dp(n)

dt
= (A− C) < n > −B < (n + 1)2 > +A (4.5.8)

In the limit of < n >¿ 1 and < n2 >=< n >2, this equation reduces to Eq.(1.5.6).

Thus, a semi-classical treatment is valid when a large number of photons are present.

In such a situation one may describe the light field in terms of a scalar field and, in this

large number limit, correlations factorize into product of means. The term A, absent in

the semiclassical equation, represents spontaneous emission into the lasing mode. As

mentioned in Chapter 1 this is caused by vacuum fluctuations and allows the field to

build up from an initial cold cavity state (n = 0).

The full quantum theory of meso-scale lasers is developed in the next chapter, which

essentially uses the Jaynes-Cummings Hamiltonian as a starting point and uses the the-

ory of reservoirs to couple the system to the outside world. However, solutions obtained

are exact in the absence of any adiabatic and large particle-number approximation. This

allows us to connect with the semi-classical predictions of Chapter 3. For example,

adiabatic elimination only retains the information for the light field and hence no infor-

mation on carrier-depinning can be obtained from this method.
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Chapter 5

Quantum theory of meso-scale lasers

and saturable absorbers

5.1 Introduction

Fluctuations due to quantization can dominate predicted behavior of meso-scale lasers.

Using only semiclassical master equations and specific device parameters, it was shown

in Chapter 3 that quantization of particle number, and the fact that a lowest energy state

of the system exists, can suppress lasing and enhance spontaneous emission around

threshold [Ref. [34, 35]]. The conditions under which this happens require treating β

as a separate variable and giving it a small value β ¿ 1. For this semiclassical system,

dynamic switching between two characteristic system states can dominate fluctuations

and correlations between n discrete excited electronic emitter states and s discrete pho-

tons and create a non-Poisson probability distribution.

However, to study the fundamental contribution of field quantization to noise and

fluctuations in meso-scale lasers requires going beyond particle number quantization

and semiclassical master equations. Here, we use a quantum mechanical description of a

meso-scale laser containing s cavity photons and Ne emitters and find solutions by direct

integration of the system’s density matrix. Quantum fluctuations in this finite-sized

dissipative system is found to be sensitive to the number of emitters and the presence

of inhomogeneous saturable absorbtion. This result gives a physical interpretation to
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the use of β as a free variable in the semi-classical master equation and the predicted

behavior discussed in Chapter 3.

This chapter is organized as follows. In Section 5.2 a model is developed that

includes Ne two-level (quantum dot or atom) emitters incoherently pumped by an exter-

nal reservoir and a quantized photon field with s cavity photons that can decay into an

external reservoir through finite reflectivity mirrors. The algorithm used in solving this

problem computationally is explained in detail. Section 5.3 describes the calculated

steady-state properties as the number of identical emitters in the cavity is increased.

Section 5.4 considers the case of an inhomogeneous active system consisting of iden-

tical emitters and a saturable absorber. Under these conditions, the quantum model

can predict lasing suppression, enhanced spontaneous emission and the associated emit-

ter excitation number de-pinning, and bi-modal probability distributions. These results

allow interpretation of previously reported predictions found by solving the semiclassi-

cal master equations [Ref. [34, 35]].

Section 5.5 describes the predictions of the quantum model correlation functions

for the production of non-classical light.

5.2 THE MODEL

Figure 5.1(a) is a schematic diagram of a prototype meso-scale laser consisting of mul-

tiple two-level emitters such as quantum dots or atoms coupled to a single cavity mode

in a high-Q optical cavity formed by two partially transmitting mirrors. In our model of

this system, both light and emitters are treated quantum mechanically. The number of

emitters is Ne and, for simplicity, they are assumed to be in resonance with the single

cavity mode and so detuning is ignored.
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Figure 5.1: (a) Schematic diagram of multiple emitters coupled to a single optical cavity mode with
total mirror loss rate, κ. (b) Processes in a single emitter showing incoherent pump transition rate P ,
stimulated and spontaneous coefficient g, and loss rate γ. Separation in emitter eigenenergy is E2−E1 =
~ω, where ω is the angular frequency of the high-Q optical cavity resonance.

As illustrated in Fig. 5.1(b), emitter electronic states are continuously incoherently

pumped at rate P by an external reservoir. The stimulated and spontaneous emission

coefficient coupling the ground |1〉 and excited |2〉 electronic states of each emitter is

g. The separation in emitter eigenenergy is E2 − E1 = ~ω, where ω is the angular

frequency of the high-Q optical cavity resonance. The emitters are damped at rate γ by

a reservoir of oscillators representing incoherent decay via spontaneous emission into

non-lasing leaky modes. Decay of the laser photon field in the single cavity mode is by

coupling to another external reservoir through partially transmitting mirrors with total

loss rate κ.

The Hamiltonian describing two-level emitters coupled to a single cavity mode and

interacting with external reservoirs is

H = HS + HRS + HR (5.2.1)
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where HS is the Hamiltonian of the system of emitters and photons, HR is the Hamilto-

nian for the reservoirs, and HRS couples the system to the reservoirs. HS is the Jaynes-

Cummings Hamiltonian [Ref. [15]] coupling a single cavity mode with the emitters (see

Chapter 4). For a homogeneous system, in which emitter properties are identical,

HS = ωa†a +
Ne∑

k=1

ω |2k〉 〈2k|+ g(σka
† + aσk

†) (5.2.2)

where ~ = 1, and the operators σk
† = |2k〉 〈1k| and σk = |1k〉 〈2k| couple the ground

|1k〉 and excited |2k〉 electronic states of the emitter k with energies E1 = 0 and E2 = ω

respectively. The operator a† creates a photon of energy ω. The coupling terms are eval-

uated within the dipole and rotating wave approximation [Ref. [15]]. The summation

runs from k = 1 to the total number of emitters, Ne.

The Hamiltonian coupling the system to the reservoirs is

HRS =
∑

R′′
µR′′ [ab†R′′ + bR′′a

†] +
∑

R

λR[σkbR
† + bRσk

†] +
∑

R′
λ′R′ [σkbR′

† + bR′σk
†]

(5.2.3)

The first term causes direct dissipation of cavity mode photons due to incomplete

reflectance of the mirrors and thereby coupling it to the continuum of photonic modes

outside the micro-cavity. The second term is dissipation by direct coupling of the emitter

to harmonic oscillator photonic modes different from the cavity mode. This describes

dissipation of the emitter by spontaneous emission to an external reservoir of photons

created by b†R. The last term is due to the incoherent pump that is modeled as an inverse

spontaneous decay process. The pump is a process that couples the emitter with a reser-

voir of inverted harmonic oscillators [Ref. [26, 44]]. The pumping and emission mech-

anisms in HRS introduce decoherence affecting the quantum properties of the system.
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The term HR describes the external reservoirs of harmonic oscillators with bosonic

commutation rules. The coupling constants µR and λR depend on the particular mode

of the reservoir. Detailed derivation of these interactions with reservoirs may be found

in Refs.[ [12, 15, 26, 27]]. (See Chapter 4 for details)

To describe the different pumping and loss mechanisms for a single emitter it is

convenient to work in the basis (|1s〉 ; |2s〉) where s is the number of cavity photons and

(1, 2) are the states of the emitter. These are product states between the emitter states

and the Fock states of the cavity mode. Although the theory may include the effects

of finite temperature reservoirs, we consider the special case of zero temperature (T =

0 K) to emphasize the quantum origin of the fluctuations. The reduced density matrix

ρ for the coupled emitter-photon system is obtained from the total density matrix ρT

by tracing out the reservoir degrees of freedom. In the interaction picture for multiple

emitters ρ satisfies the master equation

dρ

dt
=

i

~
[ρ,HS] +

κ

2
(2aρa† − a†aρ− ρa†a) +

∑

k

γk

2
(2σkρσk

† − σk
†σkρ− ρσk

†σ)

+
∑

k

Pk

2
(2σk

†ρσk − σkσk
†ρ− ρσkσk

†)

(5.2.4)

or

dρ

dt
= L̂ρ (5.2.5)

92



where L̂ is the time propagator for the density matrix. The master equation is obtained

under the Born-Markov approximation [Ref. [15]] for the interaction between the sys-

tem and the reservoirs. In the chosen basis the matrix elements of the reduced density

operator ρ are

ρkn,jm = 〈kn| ρ |jm〉 (5.2.6)

The diagonal matrix elements describe populations of the emitter-photon levels and the

off-diagonal terms quantify the coherence between these levels. Eq.(5.2.4) may be used

to obtain the time evolution of the system. For a single emitter at time t = 0 the evolution

of the density matrix is

dρ

dt
=


 ∂tρ1s,1s ∂tρ1s,2s−1

∂tρ
∗
1s,2s−1 ∂tρ2s,2s


 (5.2.7)

where

∂tρ1s,1s = ig
√

s(ρ1s,2s−1 − ρ1s−1,2s) + γρ2s,2s − κ(sρ1s,1s − (s + 1)ρ1s+1,1s+1)− Pρ1s,1s,

(5.2.8)

∂tρ2s,2s = ig
√

s + 1(ρ1s,2s+1 − ρ1s+1,2s)− γρ2s,2s − κ(sρ2s,2s − (s + 1)ρ2s+1,2s+1) + Pρ1s,1s,

(5.2.9)

∂tρ1s,2s−1 = ig
√

s(ρ1s,1s − ρ2s−1,2s−1)− ((γ + κ(2s− 1) + P )/2)ρ2s,1s−1

+κ
√

s(s + 1)ρ1s+1,2s (5.2.10)
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The interaction parameterized by κ, γ, and P couple matrix elements with different

photon occupation number s. This leads to an infinite set of differential equations which

are truncated for numerical integration at a high value of s. The initial state is an empty

cavity (s = 0) with the emitter in its ground state |1〉, i.e. ρ10,10 = 1. As mentioned

previously, the basis states used for expansion is the product of the Fock states for pho-

tons and the |1〉 (ground) , |2〉 (excited) states for the two-level emitter. In this basis the

density matrix ρ for the single emitter is of the form,

ρ =




|10〉 |20〉 |11〉 |21〉 |12〉 |22〉 . . |1s + 1〉 |2s + 1〉
〈10| ρ10,10 0 0 0 0 0 0 0 0 0

〈20| 0 ρ20,20 ρ20,11 0 0 0 0 0 0 0

〈11| 0 0 ρ11,20 ρ11,11 0 0 0 0 0 0

〈21| 0 0 0 ρ21,21 ρ21,12 0 0 0 0 0

〈12| 0 0 0 ρ12,21 ρ12,12 0 0 0 0 0

〈22| 0 0 0 0 0 ρ22,22 . 0 0 0

. . . . . . . . . . .

. . . . . . . . . . .

〈1s + 1| 0 0 0 0 0 0 0 0 ρ1s+1,1s+1 0

〈2s + 1| 0 0 0 0 0 0 0 0 0 ρ2s+1,2s+1




(5.2.11)

The first-order equations derived from the density matrix couples terms in a system-

atic way. Since there is no detuning, energy units of photons and emitters are the same.

The terms ρ1s,1s, ρ2s−1,2s−1, ρ1s,2s−1 and ρ1s−1,2s all have the same units of energy, i.e. s.

More importantly the corresponding bra and ket component of an element has the same
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energy. For example, ρ1s−1,2s has the same energy of s units for its 〈1s− 1| and |2s〉.
This principle holds for multiple emitters. An example of a density matrix element of a

Ne = 4 two-level emitter system is 〈2121s| ρ |2221s− 1〉, where the first four numbers

represent the states of the four emitters. This element is similar to the simple one emit-

ter element, as it has equal energy in its bra and ket components and also couples with

similar equal energy elements. The number of independent terms with equal energy in

its bra and ket grows as 4Ne . The equations (5.2.8-5.2.10) can be written in the matrix

format and solved using Euler or RK4 integration. In matrix format




ρ̇10,10

ρ̇20,20

ρ̇11,20

ρ̇20,11

.

ρ̇1s+1,1s+1

ρ̇2s+1,2s+1




=




−P γ 0 0 .. 0 0

P −γ(1) −ig ig .. 0 0

0 −ig
√

1 −1
2
(γ + κ(2.1− 1) + P ) 0 .. 0 0

0 ig
√

1 0 −1
2
(γ + κ(2.1− 1) + P ) .. 0 0

. . . . . . .

0 0 0 0 0 0 0

0 0 0 0 0 0 0







ρ10,10

ρ20,20

ρ11,20

ρ20,21

.

ρ1s+1,1s+1

ρ2s+1,2s+1




(5.2.12)

The matrix form of L̂ is shown explicitly for the equations that relate equal energy

terms (equal energy in bra and ket). Note the arrangements of the terms in the vectors
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containing the diagonal and off-diagonal density matrix elements. They are arranged in

the sequence,




ρ10,10

ρ20,20

ρ11,20

ρ20,11

ρ11,11

ρ21,21

.

.

ρ1s+1,1s+1

ρ2s+1,2s+1




(5.2.13)

So the four independent elements for the single two level emitter, 41 are ρ1s,2s−1, ρ2s−1,1s,

ρ1s,1s and ρ2s,2s, and this is exactly the sequence in which they are arranged in the vector.

Note the first two terms are not allowed for s = 0 and hence not included. The set for

s = 1 is however complete. If we treat this set of 4 elements as a unit cell, then the unit

cell gets repeated for values of s from 0 to strunc + 1. The terms for the extra photon

strunc + 1 after strunc is required for the boundary conditions. The equations for the unit

cell of s photons is connected to the equations for the neighboring unit cells of s + 1

and s − 1 photons because of the nature of the actual transitions. Hence the elements

of the last unit strunc + 1 is required, and their derivatives and initial values are set to

zero, so that their values do not evolve and they truncate the problem. Now the fact that

the unit cell of s photons connect to the unit cells of the neighboring photon numbers

is used in allocating the coefficient matrix L̂. An element ρ1s2s−1, has its allowed set

of processes and the elements it connects to can be obtained from the original Master
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equation, Eq.(5.2.4). This problem can be generalized for the multi-emitter case. For

simplicity, lets consider equal energy elements or elements which have equal energy in

their bra and ket. This set of independent equal energy elements form the basic unit cell,

as was written out explicitly for the one-emitter case and their number for the general

case is given by 4Ne . So in this case, the vectors (Eq.(5.2.13)) are populated by repeating

these basic units for increasing photon numbers (s = 0, 1, 2, ...., strunc). For example,

for the two atom case there are 16 independent elements of the form, ρ11s11s, ρ22s,22s.......

Now equations for individual elements in a unit connects to terms within its own unit

and its nearest neighbors. So when an element is allowed a process via a stimulated

emission or absorption, which conserves the total number of excitations, then it connects

to elements within its own unit. However when the total excitation number changes by

one unit, for processes such as pump, P , cavity decay, κ, and spontaneous emission, γ,

then they connect with elements in the neighboring units. So for every allowed process

we can set up a search space of three units s− 1, s and s+1 to locate all the elements to

which it connects. For example, in the one-emitter case if strunc = 100, then there are

a total of 4 × (100 + 1) + 2 elements. So instead of trying to search in a space of 406

elements for the connecting element, the total search space is reduced to 4×3 = 12. This

makes allocation of the coefficient matrix L̂ more efficient numerically. The location of

the pump and the cavity loss elements are returned by the function, operators3 allocating

the coefficient matrix, so that for different pump values, only the particular locations of

the matrix can be updated instead of constructing the whole thing all over. Such an

approach is useful in computing steady state characteristics for multiple pump values.

Also lower pump values have lower photon numbers for strunc. For a given set of pump

values and for a fixed strunc, the entire matrix, L̂, is constructed only once for the first

pump value and then the matrix is updated for the other pump values in the series.

Recognizing the independent elements in the unit cell of the density matrix for the
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one emitter case is simple. However expanding this to the multi-emitter case requires

a small algorithm. By using this we build the elements that make each unit cell for a

given number of photons. Lets consider equal energy elements for the two emitter case.

In the code we call this unit cell, state-vector-frame. This frame is a matrix containing

the excitations and the photon numbers for a particular density matrix element in its

rows. For example ρ11s,12s−1, for a two emitter system is allocated a particular row

in the unit cell as [1 1 s 1 2 s − 1], where the excitations and photon numbers are

arranged in the same order as the subscript of the element. In a particular row, for a

general Ne emitter system, the first 1 to Ne elements denote excitations in the bra. The

(Ne + 1)th element denotes the photon number, the next Ne + 2 to 2Ne + 1 elements

are excitations of the ket and the (2Ne + 2)th element denoting the photon number in

the ket. The first two rows of the unit cell are [0 0 s 0 0 s] and [1 1 s 1 1 s] which

are the all empty and all filled states. The maximum total emitter excitation, Nex in a

Ne emitter state is (0,1, 2,....Ne). Now the Nex = 0 ([0 0]) and the Nex = 2 ([1 1])

states are already accounted. The other possibility is 1 excitation, which gives possible

states [0 1] and [1 0]. So, in general, to obtain k excitations in Ne available positions

the number of choices are
(

N

k

)
and MATLAB prints out the configuration of these

individual choices using the command nchoosek. In the 2-emitter case the choices are

[0 1 s 0 1 s] and [1 0 s 1 0 s]. So we have a set of elements with same bra and ket and

they form the diagonal elements which in general is of number 2Ne . We also save the

emitter parts of these kets |11〉 , |22〉 , |12〉 and |21〉 for further mixing in a matrix called

vector-store. Now we construct the elements of the unit cell which are asymmetric, but

of equal energy (ρ21s,12s). This is obtained by combining the elements of vector-store

amongst each other. If the number of elements in vector-store is given by D, then the

possible choices is given by 2

(
D

2

)
since you combine two different elements (bra and

ket) to get a full element and the 2 takes care of the complex conjugate that arises in
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the asymmetric terms. The command nchoosek(1 : 1 : D, 2) prints out the possible

combinations between the different rows of vector-store, for example an output [1 2]

means row 1 would make the bra and row 2 would make the ket for an element i.e.

〈00s| ρ |11s′〉 for the two-emitter case. These possible combination indices are stored

in rows of the matrix photon-diff-states-mat. Each combination row gives rise to two

elements which are complex conjugates of each other. Now we should remember that

the equal energy condition should not be violated in creating these independent density

matrix elements. However for the 2-emitter example considered, 〈00s| ρ |11s′〉, the net

emitter excitation in the bra is 0 and in the ket is 2. This is now made equal in energy
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with the help of the photons s and s′. To compensate in this case s′ is set to s− 2. Thus

by collecting all the elements we can write the unit cell in the two-emitter case as




ρ11s,11s

ρ11s,22s

ρ12s,12s

ρ21s,21s

ρ11s,22s−2

ρ22s−2,11s

ρ11s,12s−1

ρ12s−1,11s

ρ11s,21s−1

ρ21s−1,11s

ρ22s,12s−1

ρ12s−1,22s

ρ22s,21s−1

ρ21s−1,22s

ρ21s,12s

ρ12s,21s




=




1 1 s 1 1 s

2 2 s 2 2 s

2 1 s 2 1 s

1 2 s 1 2 s

1 1 s 2 2 s− 2

2 2 s− 2 1 1 s

1 1 s 1 2 s− 1

1 2 s− 1 1 1 s

1 1 s 2 1 s− 1

2 1 s− 1 1 1 s

2 2 s 1 2 s− 1

1 2 s− 1 2 2 s

2 2 s 2 1 s− 1

2 1 s 1 2 s

1 2 s 2 1 s




(5.2.14)

This unit cell is stored as state − vector − frame (Right hand side of Eq.(5.2.14)) and

is repeated for photon numbers s equal to 0 to strunc + 1, in order to get the total

state − vector . After constructing this, rows containing negative photon numbers in

their bra ((Ne + 1)th) or ket (2(Ne + 1)th) are eliminated. Locating the diagonal ele-

ments, such as ρ11s11s, is essential for calculating expectation values. This can be done

easily. Just subtract the first Ne + 1 elements (bra) from the second Ne + 1 elements,

take the absolute values and sum the arrays (row-wise). Only diagonal elements give
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zero. The master equations may be used to compute the dynamics of expectation values

of any system operators. The evaluation of the diagonal elements allows calculation

of steady-state properties and single time averages of operators. The important photon

field-field and intensity-intensity correlation are

g1(t, τ) = 〈a†(t)a(t + τ)〉 (5.2.15)

g2(t, τ) = 〈a†(t)a†(t + τ)a(t + τ)a(t)〉 (5.2.16)

In steady-state these correlations do not depend on time t and can be evaluated using

〈a†(t)a(t + τ)〉 = Tr[ae L̂τ [ρsa
†]] (5.2.17)

〈a†(t)a†(t + τ)a(t + τ)a(t)〉 = Tr[a†ae L̂τ [aρsa
†]] (5.2.18)

which is valid for Markovian systems [Ref. [26]] (See Appendix A for details). Here, ρs

is the steady-state solution of the master equation Eq.(5.2.5) and L̂ is the time-evolution

operator of the density matrix.

The coupled density matrix equations, for the single-emitter case, used to obtain the

first-order correlation function g1(t, τ) are

∂tρ1s+1,1s = ig(
√

sρ1s+1,2s−1 −
√

s + 1ρ2s,1s) + γρ2s+1,2s − Pρ1s+1,1s

+
κ

2
(2

√
(s + 1)(s + 2)ρ1s+2,1s+1 − (2s + 1)ρ1s+1,1s), (5.2.19)
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∂tρ2s+1,2s = ig(
√

s + 1ρ2s+1,1s+1 −
√

s + 2ρ1s+2,2s)− γρ2s+1,2s + Pρ1s+1,1s

+
κ

2
(2

√
(s + 1)(s + 2)ρ2s+2,2s+1 − (2s + 1)ρ2s+1,2s), (5.2.20)

∂tρ2s,1s = ig(
√

sρ2s,2s−1 −
√

s + 1ρ1s+1,1s)− ((γ + 2sκ + P )/2)ρ2s,1s

+ κ(s + 1)ρ2s+1,1s+1 (5.2.21)

and

∂tρ1s+1,2s−1 = ig(
√

sρ1s+1,1s −
√

s + 1ρ2s,2s−1)− ((γ + 2sκ + P )/2)ρ1s+1,2s−1

+ κ
√

s(s + 2)ρ1s+2,2s (5.2.22)

The terms ρ1s+1,1s, ρ2s+1,2s, ρ2s,1s and ρ1s+1,2s−1 all have the same units of energy, s and

s + 1 in their bra and ket components respectively. Similar terms are coupled to each

other and the same principle is obeyed when more emitters are added. The location of

these elements in the density matrix is shown in Eq. (5.2.23),

ρ =




0 0 0 0 0 0 0 0 0 0

ρ20,10 0 0 0 0 0 0 0 0 0

ρ11,10 0 0 0 0 0 0 0 0 0

0 ρ21,20 ρ21,11 0 0 0 0 0 0 0

0 ρ12,20 ρ12,11 0 0 0 0 0 0 0

0 0 0 ρ22,21 ρ22,12 0 0 0 0 0

. . . . . . . . . .

. . . . . . . . . .

0 0 0 0 0 0 . . 0 0

0 0 0 0 0 . . 0 ρ2s+1,1s+1 0




(5.2.23)
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These terms are different from the terms that we solved using Eqs.(5.2.8-5.2.9). The

current terms are not equal energy elements. Since these terms are initially equal to

zero, their time-evolution should not evolve their values. Eqn 5.2.17, shows the operator

a† acting on ρ, from the left and the product matrix ρa† is time evolved by L̂. Now the

form of the a and a† operator, in the given basis is

a =




0 0
√

1 0 0 0 0 0 0 0

0 0 0
√

1 0 0 0 0 0 0

0 0 0 0
√

2 0 0 0 0 0

0 0 0 0 0
√

2 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

. . . . . . . . . .

. . . . . . . . . .

0 0 0 0 0 0 . . 0 0

0 0 0 0 0 0 . . 0 0




(5.2.24)
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a† =




0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
√

1 0 0 0 0 0 0 0 0 0

0
√

1 0 0 0 0 0 0 0 0

0 0
√

2 0 0 0 0 0 0 0

0 0 0
√

2 0 0 0 0 0 0

. . . . . . . . . .

. . . . . . . . . .

0 0 0 0 0 0 . . 0 0

0 0 0 0 0 0 . . 0 0




(5.2.25)

The density matrix in steady-state is given by Eq.(5.2.11) in the matrix form. This ρ

when acted upon by a† from the right reaches the form

(ρa†) =




0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
√

1ρ11,01 0 0 0 0 0 0 0 0 0

0
√

1ρ21,21

√
2ρ21,12 0 0 0 0 0 0 0

0
√

1ρ12,21

√
2ρ12,12 0 0 0 0 0 0 0

0 0 0
√

2ρ22,22 0 0 0 0 0 0

. . . . . . . . . .

. . . . . . . . . .

0 0 0 0 0 0 . . 0 0

0 0 0 0 0 . . 0 0 0




(5.2.26)
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which is very similar to the form ρ given by Eq.(5.2.23). Thus after solving Eq.5.2.11 to

the steady state, we multiply it with a† and that gives us Eq.(5.2.26) which populates the

same elements present in ρ (Eq.(5.2.23)), and hence the initial value of these elements

from which it can be time evolved using Eqs.(5.2.19-5.2.22). These equations, similar

to Eqs.(5.2.8-5.2.10), can be written in the matrix form as




ρ̇11,10

ρ̇21,20

ρ̇21,11

.

.

ρ̇1s+2,1s+1

ρ̇2s+2,2s+1




=




−κ
2
− P γ −ig

√
1 . . 0 0

P −κ
2
− γ 0 . . 0 0

−ig
√

1 0 −1
2
(γ + κ(2.0− 1) + P ) . . 0 0

. . . . . . .

. . . . . . .

0 0 0 0 0 0 0

0 0 0 0 0 0 0







ρ11,10

ρ21,20

ρ21,11

.

.

ρ1s+2,1s+1

ρ2s+2,2s+1




(5.2.27)

Note that the matrix form of L̂ has changed as it is coupling this new set of ele-

ments. Now these elements are also arranged in the same way as before for the elements

in Eqs.(5.2.8-5.2.10). These elements have one unit of energy more in their bra as

compared to their ket. The independent elements for the one emitter case are ρ1s+1,1s,

ρ2s+1,2s, ρ2s,1s, and ρ1s+1,2s−1. These set of elements form a unit cell and the number of

elements in the unit cell is given by 4Ne for the general Ne emitter case. Now if this unit

is repeated by increasing the photon number s by 1 each time, then we can arrange the

elements in a vector in the same way. This arrangement, and the nature of the physical

processes, ensures that the elements of each unit cell connects to the elements of its own

cell and its nearest neighbors. Hence the search space for allocating the coefficients of a

matrix element (ρ1s+1,1s) obtained from Eq.5.2.4 is reduced to a great extent. The state

vector of these unequal energy elements can be created from the previous state vector
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by adding a single photon or incrementing the energy by one unit in every element of

the bra, i.e 


ρ10,10

ρ20,20

ρ11,20

ρ20,11

.

.

ρ1s+1,1s+1

ρ2s+1,2s+1




→




ρ11,10

ρ21,20

ρ12,20

ρ21,11

.

.

ρ1s+2,1s+1

ρ2s+2,2s+1




(5.2.28)

After the time evolution of the product, ρa† for time τ , the a operator acting on the

product of ρa† brings back the diagonal which is then summed to obtain g1(t, τ). In

matrix form, aρa† is




√
12ρ11,11 0 0 0 0 0 0 0 0 0

0
√

12ρ21,21

√
1.2ρ21,12 0 0 0 0 0 0 0

0
√

1.2ρ12,21

√
22ρ12,12 0 0 0 0 0 0 0

0 0 0
√

22ρ22,22

√
2.3ρ22,13 0 0 0 0 0

0 0 0
√

2.3ρ13,22

√
32ρ13,13 0 0 0 0 0

0 0 0 0 0
√

32ρ23,23 . . 0 0

. . . . . . . . . .

. . . . . . . . . .

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0




(5.2.29)
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Likewise, the operation aρa† produces equations coupling terms similar to Eqs.(5.2.8 -

5.2.10) because of the two operations on the density matrix, ρ (Eq.(5.2.11)) produces

a similar matrix form (Eq.(5.2.29)). This product matrix is time evolved by L̂, which

is of the same form as Eq.5.2.12. Eq.5.2.29 produces the initial value starting from

Eq.(5.2.11). The operator a†a is diagonal and affects only the diagonal elements which

are summed over after the product. There is another non-triviality which arises in allo-

cating the initial values in the matrix ρ used in line-width calculations. While construct-

ing the state-vector the 2N independent basis vectors (|00s〉 , |11s〉 , |01s〉 , |00s〉, for the

two emitter case), is stored in a matrix called basis − vector − frame . This is a matrix

in which each row represents a basis state. Since ρ, a and a† are all represented in this

basis, we can create an entire basis set by filling out a matrix (basis-states) with the unit
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basis-vector-frame, repeated sequentially for increasing photon numbers. In the matrix

form,

basis− states =




1 1 0 1 1 0

2 2 0 2 2 0

2 1 0 2 1 0

1 2 0 1 2 0

1 1 1 1 1 1

2 2 1 2 2 1

2 1 1 2 1 1

1 2 1 1 2 1

.

.

1 1 s 1 1 s

2 2 s 2 2 s

2 1 s 2 1 s

1 2 s 1 2 s




(5.2.30)

Now since each row of the state-vector contains the bra and ket component of the ele-

ments of the density matrix that we are solving for, they can be allocated easily in the

matrix form of ρ which is required for performing the product, ρa†. The photon number

in the bra and the ket component of every element of the state − vector is known and

is given by the N + 1 and the 2(N + 1) columns of a particular row. For example, in

the 2 emitter case, the coordinates of the element ρ001,100 is stored in a state-vector row

as [0 0 1 1 0 0]. As the basis states in the matrix basis-states are also arranged in order

of increasing photon number, the search space for finding the location of the element

ρ001,100 in the ρ matrix form can be confined to the section of basis states from 0 to 1

photons. Once the location is determined, the row information and column information
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of the matrix is stored in the two vectors row-rho and col-rho respectively. An inverse

process is required for allocating the matrix elements of the product matrix ρa† in a

vector form for time propagation using Eq.(5.2.27). This is done in the same way. The

new state-vector, shown in Eq.(5.2.28) however contains unequal energy elements. But

since the bra and ket components are similarly given by every row, their values can be

located using the same technique in the product matrix ρa†. The row and the column

information of these elements in the product matrix ρa† is stored in vectors row-rho1

and col-rho1 respectively and can be recalled for future allocations as the element order

in the state-vector is unchanged for a given truncation photon number.

The photon field-field correlation gives information on phase fluctuations and the

frequency spectrum of emitted light, S(ν), may be obtained from Fourier transform

S(ν) =
1

π
Re

∫ ∞

0

dτeiντg1(t , τ) (5.2.31)

The intensity-intensity correlation gives information on photon number statistics. Phe-

nomena such as non-classical states or anti-bunching may be investigated using this

correlation. For zero delay (τ = 0) the normalized second-order correlation obtained

from Eq.(5.2.16) is

G2(τ = 0) =

〈
a†a†aa

〉

〈a†a〉2 =

∑
s s(s− 1)(ρ2s,2s + ρ1s,1s)

(
∑

s s(ρ2s,2s + ρ1s,1s))2
(5.2.32)

The Fano-factor, or normalized variance, may also be used as a measure of photon

number fluctuations and is given by

F =
〈s2〉 − 〈s〉2

〈s〉 (5.2.33)

where s is the cavity photon number.
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5.3 Scaling of lasers

5.3.1 Single emitter

We begin by analyzing the case of a single two-level emitter in a lasing cavity. Fig-

ure 5.2 illustrates the steady-state behavior of a single emitter for different cavity losses

as a function of the incoherent pump rate. Parameters used scale within a range corre-

sponding to very recent experiments on single quantum dot [Ref. [28]] and single ion

[[Ref. [29]] lasers. The cavity with the highest optical Q stores the maximum number of

photons and two distinct peaks in the Fano-factor are predicted [Ref. [31]]. As shown in

Fig. 5.2(c), the strong photon number fluctuations experienced by the system near las-

ing threshold pump rates gives rise to the first Fano-factor peak at low pump rates. The

second peak appears due to self-quenching [Ref. [31, 32]] at larger pump rates. This

occurs when correlations required for lasing are destroyed by a strong incoherent pump

and the effective gain is insufficient to overcome the cavity losses [Ref. [31]]. Thus, as

the system undergoes self-quenching, the cavity fails to store lasing photons due to the

presence of a strong incoherent pump and the photon field experiences strong fluctua-

tions. Increasing cavity loss reduces the number of cavity photons and the two peaks in

the Fano-factor collapse to a single peak. A value of Fano-factor or normalized second-

order correlation G2(τ = 0) less than unity signifies amplitude non-classical light which

may exist when there is high cavity loss and low pump rate [Ref. [30]].

The inversion of the single emitter shown in Fig. 5.2(b) has a region of low slope

in the presence of large photon number before it saturates completely. This is a signa-

ture of the carrier-pinning process that occurs in large conventional laser diodes when

driven above threshold. However, in a single emitter laser, the onset of self-quenching

due to incoherent pumping destroys the coherence and reduces the effective gain. The
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Figure 5.2: Variation of steady-state properties of a single two-level emitter coupled to a cavity field
with incoherent pump rate, P , for the indicated values of cavity loss rate κ (meV). (a) Mean photon
number in lasing mode. (b) Inversion of emitter showing significant signature of inversion pinning for
low optical loss κ = 0.1 meV. (c) Fano-factor for photon number, s. Laser threshold corresponds to
broad peak near P = 1 meV for κ < 0.8 meV. Peak due to self-quenching occurs for P > 10 meV.
(d) Spectral line width. The pump axis is in log10 scale. Dark solid line (κ = 0.1 meV), dotted line (κ =
0.2 meV), dash-dotted line (κ = 0.4 meV), light solid line (κ = 0.8 meV). Parameters : g = 1 meV, γ =
0.1 meV, ω = 1000 meV.

system tries to compensate by increasing its inversion, fails, and dissipates energy by

spontaneously emitting into modes other than the lasing mode.

As is characteristic of lasing behavior, the spectral line width of the photon field

reduces with increasing number of cavity photons. The cavity with the lowest loss can

attain the smallest line width. Far below threshold the line width is large because of

the presence of a non-inverted absorbing medium [Ref. [31]]. As shown in (Fig. 5.2(d))

the line width decreases with increasing number of cavity photons. As the system starts

self-quenching the line width increases, asymptotically approaching the empty cavity

line width.
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5.3.2 Multiple emitters

Results of our calculations shown in Fig. 5.3 confirm a previous suggestion [Ref. [32]]

that adding emitters that act as independent sources coupled by the photon field is equiv-

alent to making the cavity-emitter coupling, g, stronger. Enhanced coupling provides

more emission into the lasing mode and self-quenching occurs at larger values of pump.

As more emitters are added the position of the two peaks in the Fano-factor become

more widely separated in pump rate. In presence of a large number of photons and as

more emitters are added, self-quenching occurs and the position of the two peaks in the

Fano-factor become more widely separated in pump rate. In Fig. 5.3 the steady-state

behavior is plotted against the normalized pump rate (the actual pump energy flowing

into the system is obtained by multiplying the normalized value, P , by the number of

emitters, Ne).

Due to a stronger effective coupling the peak that occurs at a smaller pump rate shifts

to lower pump rate with increasing number of emitters. Also, with increasing number

of emitters, self-quenching occurs at higher values of normalized pump rate because

photons generated by a given emitter induce transitions in other emitters. Similarly for

inversion, the device with the largest number of emitters has the strongest pinning.

5.3.3 Semiclassical rate equations derived from quantum master

equations

We now compare the full quantum calculations with the steady-state values predicted by

semiclassical rate equations. Here, the semiclassical rate equations are derived from

the quantum master equations under an approximation in which correlations between

emitter and photon operators are factorized. This factorization approximation is valid in

the presence of large photon numbers.
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Figure 5.3: Variation of steady-state properties of multiple two-level emitters coupled to a cavity field
with incoherent pump P . (a) Mean photon number in lasing mode. (b) Net inversion of emitters. (c)
Fano-factor. (d) Spectral line width. Laser threshold corresponds to broad peak with P < 1 meV. Peak
due to self-quenching occurs when P > 10 meV. (d) Spectral linewidth. The pump axis is in log10 scale.
Behavior for different number of emitters is compared. Dark solid line (Ne = 1), dotted line (Ne = 2),
dash-dotted line (Ne = 3), light solid line (Ne = 4). Parameters are as in Fig. 5.2 : g = 1 meV, γ =
0.1 meV, ω = 1000 meV, κ = 0.25 meV.

For any system operator O, the equation governing its expectation value can be

derived from the quantum master equation, [Ref. [32]]

d〈O〉
dt

= − i

~
〈[O, H]〉+ Tr(OLρ) (5.3.1)
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For system operators s = a†a, a, σk
† and σzk, the equations are as follows,

d〈s〉
dt

= − i

~
∑

k

gk[〈σka
†〉 − 〈aσk

†〉]− κ〈s〉, (5.3.2)

d〈∑i σzk〉
dt

=
k

~
∑

k

2gk[〈σka
†〉 − 〈aσk

†〉]− (γ + P )
∑

k

〈σzk〉+ Na(P − γ),(5.3.3)

d〈a〉
dt

= −k

~
∑

i

gk〈σk〉 − κ

2
〈a〉, (5.3.4)

d〈σk
†〉

dt
= −k

~
gk〈σzka

†〉 − γ + P

2
〈σk

†〉 (5.3.5)

where σzk is the inversion of the kth emitter. These equations and its complex conjugates

on being solved in steady-state yield mean cavity photon number 〈s〉 and net inversion

above threshold 〈∑k σzk〉

〈s〉 =
1

2κ
(Na(P − γ)− κ(

~(γ + P )

2g
)2), (5.3.6)

〈
∑

k

σzk〉 =
~2κ(γ + P )

4g2
(5.3.7)

As shown in the previous section, more emitters lead to more photons in the cavity

and hence a better agreement is observed with the semiclassical predictions. This is

similar to increasing the cavity-emitter coupling, g , which also leads to more photons in

the cavity.

The parameters in Fig. 5.4 are modified to produce a larger laser threshold com-

pared to Fig. 5.3. This is done by enhancing the spontaneous emission rate γ into non-

lasing modes. The cavity with a single emitter supports a single peak in the Fano-factor.

Increasing γ reduces the effective gain [Ref. [31]], which leads to a smaller number of

photons in the lasing cavity.
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Figure 5.4: Comparison of steady-state properties derived from semiclassical rate equations and the
full quantum theory. (a) Mean photon number in lasing mode. (b) Net inversion of emitters. (c) Fano-
factor. Threshold for Ne ≥ 2 corresponds to peak near P = 3 meV and peak due to self-quenching
occurs for P > 20 meV. (d) Spectral line width. The pump axis is in log10 scale. Behavior for different
number of emitters is compared. Dark solid line (Ne = 1), dotted line (Ne = 2), dash-dotted line (Ne =
3), light solid line (Ne = 4). The thicker lines denote quantum calculations and the corresponding thinner
lines denote semiclassical calculations. Parameters : g = 1 meV, γ = 2 meV, ω = 1000 meV, κ =
0.25 meV.

There is good agreement between the predictions of the full quantum theory and the

semi-classical rate equations in regions of large photon numbers as shown by Fig. 5.4(a)

and (b). Disagreement is found near lasing threshold and self-quenching because the

factorization approximation fails when average photon numbers are small.

5.3.4 Semiclassical master equations

It is interesting to compare the predictions of the full quantum calculations with those of

the semiclassical master equations developed in [Ref. [34, 35]]. Figure 5.5 shows

transitions out of (n, s) in the n−s state-space where n is the discrete number of excited

115



electronic states in the cavity and s denotes the number of photons. Trajectories of a

biased random walk in n−s state-space are used to sample solutions to the semiclassical

master equations.

Figure 5.5: Transition rates out of state (n, s). g is the dipole coupling constant,−gns is the stimulated
emission rate in the system at photon energy ~ω,−g(Ne−n)s is the stimulated absorption rate where Ne

is the maximum number of emitters, γ is the spontaneous emission rate into modes other than the cavity
mode and κ is the total optical loss rate from the cavity. I is the excited state injection (pump) rate.

The random walk calculations are modified in the sense that the number of emitters

or excited states in the cavity is limited. So current can only pump the system if emitter

excitation is possible. The semiclassical master equations account for energy and par-

ticle number conservation but they do not include phase fluctuations and hence cannot

reproduce the effects of self-quenching which occurs due to suppression of coherence.

However, the method predicts enhanced photon fluctuations around threshold quantified

by the Fano-factor after which, with increasing pump rate, the excitation gets pinned and

the cavity photon number increases. Figure 5.6 compares semiclassical master equation

behavior with the full quantum model and shows good agreement near the threshold

region before onset of quenching. The net excitation is partially pinned at similar values

of pump rate predicted by the semiclassical calculations (Fig. 5.6(b)). The location of

the lasing threshold pump rate, as determined by the first peak in the Fano-factor, is also
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in close agreement with the semiclassical calculations (Fig. 5.6(c)). These results val-

idate the assumption that particle number quantization captures much of the full quan-

tum model of multi-emitter meso-lasers [Ref. [34, 35]] for pump rates below the onset

of self-quenching. There is somewhat less agreement for the case of a single emitter

indicating that it is more sensitive to complete field quantization compared to the multi-

emitter case.
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Figure 5.6: Comparison of steady-state properties derived from semiclassical master equations and
the full quantum theory for different numbers of emitters. (a) Mean photon number in lasing mode.
(b) Net inversion of emitters. (c) Fano-factor. Laser threshold for Ne ≥ 2 corresponds to broad peak
near P = 3 meV and self-quenching, which is a pure quantum effect, occurs for P > 20 meV. (d)
Spectral line width. The pump axis is in log10 scale. Dark solid line (Ne = 1), dotted line (Ne = 2),
dash-dotted line (Ne = 3), light solid line (Ne = 4). The thicker lines denote quantum calculations and
the corresponding thinner lines denote semi-classical master equation calculations. Parameters are as in
Fig. 5.4 : g = 1 meV, γ = 2 meV, ω = 1000 meV, κ = 0.25 meV.

The semiclassical master equation predictions of lasing suppression around thresh-

old and the associated excited electronic state depinning around threshold found in Ref.

[ [34, 35]] is however absent in the full quantum model for Ne identical emitters. This is
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because, in a homogeneous quantum system, spontaneous emission into the lasing mode

has the same coefficient as the net stimulated gain term in the presence of one photon

[Ref. [45, 46, 47, 48]]. The semiclassical master equation is not constrained in this

way and the stimulated gain and spontaneous emission into the lasing mode are taken

as independent phenomenological parameters [Ref. [24, 44, 49]]. The effects of lasing

suppression and bimodal probability distributions may be captured in the full quantum

model by including a saturable absorber in the system. This inhomogeneity provides an

explanation of the origin of the phenomenological parameters used in the semiclassical

master equation.

5.4 Saturable absorber

Inhomogeneity is incorporated in the quantum model of the laser by including a sat-

urable absorber. As illustrated in Fig. 5.7, this is achieved by introducing Na saturable

absorber material elements, each coupled to the photon field by a coupling constant g′

and decay rate γ′. This material is not incoherently pumped and it absorbs photons cre-

ated in the cavity by emitters. Once saturated, the system may lase. The Hamiltonian

is

HS = ωa†a +
Ne∑

k=1

ω |2k〉 〈2k|+ g(σka
† + aσk

†)

+
Na∑

k′=1

ω |2k′〉 〈2k′|+ g′(σk′a
† + aσk′

†) (5.4.1)
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Including the interaction with reservoirs, the master equation is

dρ

dt
=

i

~
[ρ, HS] +

κ

2
(2aρa† − a†aρ− ρa†a) +

Ne∑

k=1

γk

2
(2σkρσk

† − σk
†σkρ− ρσk

†σk)

+
Ne∑

k=1

Pk

2
(2σk

†ρσk − σkσk
†ρ− ρσkσk

†) +
Na∑

k′=1

γ′k′
2

(2σk′ρσk′
† − σk′

†σk′ρ− ρσk′
†σk′)

(5.4.2)

Figure 5.7: System of multiple emitters coupled to a single optical cavity mode in the presence of a
saturable absorber. Illustration is for Ne = 3 and Na = 1. It is assumed g < g′ and γ < γ′.
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As shown in Figs. 5.8 and 5.9, with appropriate choice of parameters, results of the

quantum model are similar to the predictions of semiclassical master equations. A linear

scale is chosen in Fig. 5.8 for easy comparison with our previous results in Ref [34, 35].

The horizontal scale is limited to values of pump less than the onset of self-quenching.

The behavior of a meso-laser with a saturable absorber for pump rates that include self-

quenching is shown in Fig. 5.9.

Figs. 5.8 and 5.9 show bi-modal photon distributions (Fig. 5.8(g)) and excited state

depinning around threshold (Figs. 5.8(b) and 5.9(b)). Emitter inversion (or excitation)

de-pins around the lasing threshold to produce the extra photons required to saturate the

absorber before the system can start lasing continuously at which point the excitation

gets pinned. Photon distribution near the depinned region is bi-modal with a strong peak

at zero photon number indicating strong switching (or blinking) between the lasing and

zero photon states of the system.

The Fano-factor shows a peak around the onset of lasing (Figs. 5.8(c) and 5.9(c))

and the linewidth reduces with increasing photon number (Figs. 5.8(d) and 5.9(d)) both

of which are signatures of threshold behavior. With further increase of pump the system

enters its self-quenching behavior and the number of photons in the cavity reduces, the

absorber loses its inversion and the lasing emitters are pinned at the saturation value.

The probability distributions in Fig. 5.8(g) from the quantum model shows that the peak

at s = 0 reduces as the pump is increased. It reaches its smallest value at a pump rate

near the linear region of lasing after which it again starts increasing because of the onset

of quenching. The semiclassical behavior however, loses this peak (at s = 0) and a

single peaked distribution remains and the system does not quench. The normalized

second-order correlation G2(τ = 0) increases in this region of bi-modal distribution

before it reaches a value of 1, showing a Poisson distribution as the system starts lasing.

120



0 4 8
0

10

20

30

40

50

M
ea

n 
ph

ot
on

 n
um

be
r,

 <
s>

Normalised pump, P (meV)

(a)

 

 

Q.C
M.C.

0 4 8
1

1.5

2

2.5

3

E
xc

ita
tio

n,
 <

σ 22
>

 

Normalised pump, P (meV)

(b)

 

 

Q.C
M.C.

0 4 8
0

5

10

15

F
an

o 
fa

ct
or

, σ
s2 /<

s>
 

Normalised pump, P (meV)

(c)

 

 

Q.C
M.C.

0 4 8
−2

−1

0

1

Li
ne

 w
id

th
, l

og
10

(∆
ω

),
 m

eV
 

Normalised pump, P (meV)

(d)

0 4 8
0

0.1

0.2

0.3

0.4

A
bs

or
be

r 
ex

ci
ta

tio
n 

Normalised pump, P (meV)

(e)

 

 

Q.C
M.C.

0 4 8
1

2

3

4

G
2 (τ

 =
 0

) 

Normalised pump, P (meV)

(f)

 

 

Q.C
M.C.

0 50 100
0

0.05

0.1

Photon number, s

P
ho

to
n 

pr
ob

ab
ili

ty
, P

s (g)

 

 

2
5.5
7
9.5

997 1000 1003
0

0.5

1

N
or

m
al

is
ed

 s
pe

ct
ru

m

Frequency, ω (meV)

(h)

 

 

0.1
0.5
2
3.5
5.5
9.5

Figure 5.8: Steady-state properties of emitter-photon system in presence of a saturable absorber.
Semiclassical master equation calculations (thin lines) and the full quantum theory calculations (thick
lines). (a) Mean photon number in lasing mode. (b) Net excitation of emitters. (c) Fano-factor. (d)
Spectral line width. (e) Excitation of absorbing element. (f) Second-order coherence at zero delay,
G2(τ = 0). (g) Probability distributions across threshold from full quantum theory. (h) Spectrum at
different normalized pump rates (meV). Emitter elements Ne = 3, absorbing element Na = 1. Parame-
ters: g = 1 meV, γ = 0.1 meV, ω = 1000 meV, κ = 0.1 meV, g ′ = 4× g , γ′ = 100× γ.

With increase in photon number the spectral linewidth shown in Fig. 5.8 (d) initially

increases before it starts decreasing. This is due to the presence of the absorber. Exper-

iments with semiconductor quantum wire and quantum dot lasers whose active region

is likely inhomogeneous also show an increase in spectral linewidth before a decrease

with increasing pump around threshold [28, 40]. At values of pump rate sufficiently
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Figure 5.9: Steady-state properties of two-emitter system in presence of a saturable absorber. (b) Net
excitation of emitters. (c) Fano-factor. Laser threshold corresponds to broad peak near P = 1 meV and
self-quenching corresponds to the peak near P = 20 meV. (d) Line-width. (e) Excitation of absorbing
element. (f) Second-order coherence at zero delay, G2(τ = 0). The pump axis is in log10 scale. Number
of emitter elements Ne = 2 and number of absorbing elements Na = 1. Parameters: g = 1 meV, γ =
0.1 meV, ω = 1000 meV, κ = 0.25 meV, g ′ = 4× g , γ′ = 4× γ.

large that the system quenches calculations show that the linewidth is greater than that

of the empty cavity. This occurs because absorber occupation is no longer inverted.

122



Figure 5.10 shows linewidth behavior with increasing pump rate below and near

threshold for different absorber coupling strength, g ′. The case with the smallest cou-

pling g ′ = 1 behaves similar to a conventional laser. Figure 5.10(d) shows that increas-

ing g ′ produces a greater broadening of linewidth or enhanced phase fluctuations in the

region below threshold. The photon probability distributions are not bi-modal in this

region. However, at greater pump rates large values of g ′ create bi-modal distributions

and excitation-depinning. This gives rise to a region of enhanced phase fluctuations

and hence increased linewidth before, with increased pump rate, experiencing enhanced

amplitude fluctuations quantified by the Fano-factor around threshold. Decreasing the

value of γ′ reduces the range of pump values over which linewidth increases.

Previous studies of lasers incorporating a saturable absorber, such as [Ref. [52, 53,

54]], make use of the large particle number approximation and/or adiabatic elimination.

This previous work contains some features common to our results including lasing sup-

pression and bimodal photon distribution near threshold. However, the previous work

has no results for meso-scale laser excitation depinning or meso-scale laser spectral line

width, and is unable to predict quenching due to quantum decoherence.

Finally random walk calculations can be performed on larger systems, which show the

novel features predicted by our quantum model. The time trajectories clearly show

the existence of bistable behavior around the threshold region. The enhancement of

spontaneous emission with carrier de-pinning is also observed. The effect gets enhanced

for stronger absorber coupling g′.
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Figure 5.10: Comparison of steady-state properties of emitter-photon system in presence of a saturable
absorber for indicated absorber coupling g ′ in meV. Normalized pump power shown from low vales up to
values around threshold. (a) Mean photon number in the lasing mode. (b) Net excitation of emitters. (c)
Fano-factor. (d) Spectral line width. (e) Excitation of absorbing element. (f) Second-order coherence at
zero delay, G2(τ = 0). Number of emitter elements Ne = 3 and number of absorbing elements Na = 1.
Parameters: g = 1 meV, γ = 0.1 meV, ω = 1000 meV, κ = 0.05 meV, γ′ = 100 × γ. The curves
correspond to different magnitudes of the absorber coupling g ′.

5.5 Non-classical light

As described in Ref. [30], low pumping and high cavity losses leads to non-classical

states of light. The second-order correlation, G2(τ = 0) at zero delay is used to identify
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Figure 5.11: Behavior of large systems in presence of saturable absorbers (a) Net excitation of emitters
versus pump. (b) Mean photon number versus pump. (c) Spontaneous emission versus pump. (d) Net
excitation of absorbers versus pump. (e) Random walk trajectory around threshold (P = 24 meV). (f)
Random walk trajectroy at lasing (P = 50 meV). (red (photons), blue (electrons), magenta (absorbers).
Number of emitter elements Ne = 150 and number of absorbing elements Na = 100. Parameters:
g = 1 meV, γ = 0.1 meV, ω = 1000 meV, κ = 20 meV, g ′ = 10×g (blue), g ′ = 20×g (red), γ′ =
4× γ.

non-classical states. Figure 5.12 plots the variation of normalized second order correla-

tion, G2(τ) at (τ > 0) for 1, 2 and 3 emitters for high values of photon damping and

low pumps using Eq.(5.2.16). The one atom case shows non-classical behavior as pre-

dicted because, G2(τ = 0) is less than 1. The time variation also violates Schwartz’s
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inequality, G2(τ) > G2(τ = 0) [Ref. [15]] and is a signature of anti-bunched behav-

ior. Increasing the number of emitters however removes this non-classical behavior. For

multiple emitters the correlation values at zero delay, identifies them as light sources of

thermal behavior, and the time variation identifies bunched behavior of classical sources

[Ref. [31, 32, 50, 51]].
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Figure 5.12: Time evolution of normalized second order correlation G2(τ) for the indicated num-
ber of emitters in the cavity. Parameters: g = 1 meV, γ = 0.1 meV, ω = 1000 meV, κ =
2.5 meV, Normalised pump,P = 0.5 meV.

5.6 Conclusion

The fundamental contribution of field quantization to noise and fluctuations in meso-

scale lasers that include inhomogeneity in the form of a saturable absorber has been

investigated theoretically. Quantum fluctuations in this finite-sized dissipative system

can influence spectral emission line width, suppress lasing, increase particle number

fluctuations, and enhance spontaneous emission near threshold. We have presented the

first numerical simulations of static and dynamic properties of meso-scale semiconduc-

tor lasers using a quantum model with no special approximations (such as weak coupling

between the field and reservoir or a single atom emitter approximation). We have applied

this model to an inhomogeneous meso-scale laser containing N emitters and a saturable

126



absorber and demonstrated existence of carrier (excitation) depinning which has pre-

viously either been ignored or adiabatically eliminated. Our results provide an inter-

pretation of empirically determined values of β used in semi-classical meso-scale laser

models [Ref. [49]] as being due to the presence of an inhomogeneous medium and we

have successfully established the connection between the semi-classical [Ref. [34, 35]]

and full quantum description of meso-scale lasers. Our work also provides insight into

the role of phase and particle number fluctuations in determining the experimentally

observed spectral and particle correlation behavior of small lasers [40, 28, 29].

Future work might explore the impact of quantum fluctuations in determining the

temperature sensitivity of very small lasers and compare with its known role in deter-

mining temperature dependence of conventional laser diodes [Ref. [55, 56, 57]].
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Chapter 6

Conclusions

6.1 Conclusions

This chapter summarizes significant contributions of this work and discusses possible

directions for future research.

In this thesis we have investigated various aspects of different laser theories and mod-

ified them to explain the behavior of meso-scale lasers. Lasing is just one aspect of

the more general problem of radiation interacting with matter. Other aspects include

bistability, resonance florescence, etc. The general Hamiltonian of matter interacting

with an electromagnetic field is treated under various approximations which leads to

theories ranging from semi-classical to fully quantum mechanical. In this work we have

mostly focused on the lasing problem keeping the broader picture in mind. Just set-

ting up the Hamiltonian or deriving the governing equations is not sufficient. Various

approximations are required to solve these equations. The approximations made from

physical intuition about large systems leads to meaningful solutions to the problem in

most cases. The other limit of a single atom is also completely solvable. It is the inter-

mediate regime of few atoms and few photons that we are set out to address in this

work. General analytical theories developed to address this meso-regime is constrained

by approximations. In order to avoid this, we have chosen methods of numerical com-

putation to solve the problem. This thesis summarizes the previous work and discusses

new results for the meso-scale, such that a comparison can be made between the two.

The key contributions of this work are the following:
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1. To address lasing in meso-scale systems we have developed a probabilistic theory

based on semi-classical master equations which quantizes particle number. This is

required to go beyond continnum mean-field calculations and describe systems strongly

influenced by fluctuations and correlations. Three different techniques are used to solve

the master equation. One is numerical integration using an Euler or RK4 method,

which gives information about time evolution. The steady-state solution to this problem

may be obtained by a matrix inversion technique. Both of these approaches involve solu-

tions to coupled first-order differential equations and is numerically cumbersome. Thus

a different method based on a random walk approach is developed to extend calculation

to larger systems. Agreement between solutions obtained by the different techniques is

shown for the meso-scale case.

2. Results of calculations using the semi-classical master equations are compared with

continnum mean-field theories and the differences are explained as being due to the

presence of strong fluctuations and correlations incorporated into the more general the-

ory. Certain values of the parameter β lead to novel predictions of lasing suppression,

carrier de-pinning and bi-modal probability distributions in meso-scale systems around

threshold as compared to the standard phase-transition behavior shown by a bulk laser.

The de-pinning of carriers is directly related to enhancement of spontaneous emission

in non-lasing modes shown by including another mode for spontaneous emission.

3. Calculation of expectation values in the time-domain show relative slowing as com-

pared to mean-field predictions and is explained by the influence of particle correla-

tions. The data from the random-walk trajectories show strong bi-stable behavior around

threshold as the system switches between a lasing and a non-lasing state. Above thresh-

old these trajectories look similar to the ones obtained from mean-field rate equations

by adding random Gaussian noise. The RIN or frequency domain response predicted

by these two theories are compared and agreement is obtained at higher frequencies.
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The agreement can be explained as due to the same choice of rates as we go from rate

equations to the semi-classical master equations.

4. The semi-classical theory quantizes energy and has a ground-state for the system

(n = s = 0). The theory is an improvement from the continuum mean-field theories

in the sense that it can account for fluctuations through probabilities. However the line-

width information due to phase fluctuation of the light field is missing. Phase of the light

field is an important quantity and is the order parameter for lasing light emission. Thus,

to verify the predictions of the semi-classical theory and to account for phase behavior

a full quantum mechanical theory of N emitters and s photons is required. The basic

starting point is the Jaynes-Cummings Hamiltonian with coupling to reservoirs. This is

the standard approach for conventional quantum statistical theories of lasers. However,

the equations are solved by direct numerical integration without any special approxima-

tion on the choice of parameters.

5. Comparison of results with semi-classical master equation theories shows nice agree-

ment around lasing threshold. The standard predictions of laser theories such as thresh-

old and line-width behavior are recovered in the meso-scale case. Predictions of las-

ing suppression and bi-stable behavior are obtained by inclusion of inhomogeneity in

the model in the form of a saturable absorber. This sheds light on our choice of β in

the semi-classical theory which was responsible for similar predicted behavior. Semi-

classical theories and experiments treat the parameter β as an independent parameter

[Ref.[44, 49]]. However, quantum mechanically the choice of β is strongly constrained.

Thus, small values of β in a meso-scale system correspond to an inhomogeneous quan-

tum system containing a saturable absorber. In contrast with the treatments of bulk sys-

tems with saturable absorbers where the emitter excitation information is eliminated by

an adiabatic approximation, our quantum theory accounts for particle excitation directly
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and shows emitter de-pinning around threshold. Semi-classical random walk calcula-

tions show strong switching behavior around threshold and enhancement of net sponta-

neous emission in non-lasing modes. Line-width enhancement below threshold is also

predicted in inhomogeneous meso-scale laser systems. This is in direct contrast with

bulk inhomogeneous calculation which shows only line-width narrowing with increase

of cavity photons.

6. Calculations of non-classical effects such as sub-Poisson behavior and antibunching

of the light field is performed in the presence of multiple atoms using the second-order

correlation function, G2(τ). Addition of emitters removes the non-classical effects seen

in the case of a single emitter.

6.2 Future directions

The semi-classical model may be used to describe meso-scale systems when the phase-

information is not important. However, the quantum model is more complete in this

sense. The only approximations are the rotating wave approximation - which conserves

energy, Markovian approximation - which is valid for systems in contact with large

reservoirs, dipole approximation - which assumes the field is constant over the emitter

and independent emitter. The dipole approximation can be modified in the multi-emitter

case by choosing different coupling constants for each emitter, thus accounting for spa-

tial inhomogeneity. This is a possible degree of freedom and is utilized in our saturable

absorber model. Other than that, the computational technique allows independent con-

trol over all parameters influencing each emitter. The influence of these parameters in

homogenous multi-emitter system is similar to the one emitter case. However the inde-

pendent choice of parameters in an inhomogeneous system can be utilized in searching

for systems exhibiting non-classical phenomena. The model may be modified to study
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the effects of decoherence of the emitter levels. More complicated systems of multi-level

emitters (> 2) and multi-mode field can be studied by extending the current formalism.

Finite temperature effects can be investigated by using finite temperature reservoirs.

Our current work involves utilizing this quantum model to study an optical link consist-

ing of an emitter, light guide and an absorbing detector. This is the ultimate microscopic

limit of an analog optical link. The work is to focus on studying noise properties of

these systems. Another technique using feedback could be utilized in modifying the

phase and intensity correlation behavior of single mode light fields. This is analogous

to the homodyne detection schemes used in recovering phase-modulated signals. The

classically equivalent problem may be solved using scalar light fields. But the quantum

case involving quantum fields with few photons poses a challenge because of statistical

averaging using density matrix. One might also investigate the effect of feedback on a

quantum field and try to control it to produce non-classical behavior.

Also the techniques employed involve time-evolution to steady-state. Thus, temporal

data for this problem is available and can be controlled to produce non-classical behav-

ior, such as anti-bunching, by time-varying different parameters of the model [Ref. [31]].
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Appendix A

Evaluation of multi-time correlation

functions

The technique for calculating multi-time correlation function for Markovian systems is

reviewed following the work of C. W. Gardiner [Ref.[26]]. Calculation of line-width

(field-field), intensity-intensity correlation require statistical averages of two-time cor-

relation functions of light field operators. In general the correlation function is of the

form

〈A(t + τ)B(t)〉 = TrS[TrR[A(t + τ)B(t)ρS ⊗ ρR]] (A.0.1)

The system operators A and B are evaluated in the Heisenberg picture. Showing explicit

time dependence Eq.(A.0.1) can be written as,

〈A(t + τ)B(t)〉 = TrS[TrR[eiH(t+τ)/~Ae−iH(t+τ)/~eiHt/~Be−iHt/~ρS ⊗ ρR]] (A.0.2)

The equation includes reservoir variables and we would prefer to express this in terms

of system variables only. This is done by writing Eq.(A.0.2) as,

〈A(t + τ)B(t)〉 = TrS[ATrR[e−iHτ/~Bρtotal(t)e
iHτ/~]] (A.0.3)
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A is unaffected by the trace operation over reservoir variables and we have used the

cyclic property of trace in the derivation. The equation of motion for a term

X(τ, t) = e−iHτ/~Bρtotal(t)e
iHτ/~ (A.0.4)

in terms of τ is

i~
∂X(τ, t)

∂τ
= [H, X(τ, t)] (A.0.5)

Following the derivation of master equations for system density matrix ρS , it can be

shown that TrR[X(τ, t)] also obeys the Master equation (Eq.(5.2.5)) as a function of τ .

The time evolution operator L̂ for the master equations can now be used to write,

TrR[X(τ, t)] = L̂(t + τ, t)TrR[X(0, t)]

= L̂(t + τ, t)[BρS(t)] (A.0.6)

where in this case ρ(t) is in the Schrödinger picture. The final form of the correlation

function is given by,

〈A(t + τ)B(t)〉 = TrS[AL̂(t + τ, t)[BρS(t)]] (A.0.7)

The evolution operator acts on everything to its right. As we use the evolution operator

in the interaction picture an additional time dependence due to the free Hamiltonian

of the system should be included. In the case of resonance, this adds an extra time

dependence of e−iωτ in the field-field correlation as the two operators a(t) and a†(t + τ)

are seperated in time by amount τ . ω is the frequency of the field. However in the

intensity-intensity correlation, this dependence cancels out, as in this case we have the
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product of operator aρa† and time dependent terms from a and a† cancel due to opposite

signs.

The formula for calculation of multi-time correlation of this type is given by [Ref. [26]]

〈A0(s0)A1(s1).....Am(sm)Bn(tn)Bn−1(tn−1......B(t0)〉 =

TrS[frL̂(τr, τr−1)fr−1L̂(τr−1, τr−2).......L̂(τ1, τ0)f0ρ(t0)] (A.0.8)

where fiρ = Fiρ if Fi is one of the B′s and fiρ = ρFi if Fi is one of the A′s, and

τ0 < τ1 < τ2 < ........ < τr (A.0.9)

Here ρ is the density matrix of the system (emitter-field).
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Appendix B

Runge-Kutta method

The RK4 treatment is reviewed following the treatment in [Ref.[24]]. Most of the prob-

lems studied in this work require solution of coupled first order differential equations of

the form

d

dt
yj(t) = fj(t, y1, y2, ....yN) (B.0.1)

where j runs from 1 to N . The equations are time-evolved by numerical integration

from a given initial condition. The formula for time evolution using single step Euler

method is,

yn+1 = yn + h0f(tn, yn) + O(h2
0) (B.0.2)

where h0 is a single step. The derivative information f(t, y) at the begining of the

interval is used to make an estimate of the solution. The error O(h2
0) made in each step

is only one power of h0 smaller than the net change h0f(tn, yn).

A better estimate of the derivative can reduce this error. This is done by estimating the

derivative at different points in the interval. The method becomes accurate if the final

estimate of the derivative, f(t, y) leads to cancellation of first order and some higher

order terms. This is achieved using the fourth order Runge-Kutta method which makes
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four estimates of the dervative for each step. The time evolution formula using fourth

order RK4 method is

yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+ O(h5

0) (B.0.3)

where

k1 = h0f(tn, yn) (B.0.4)

is used to make an estimate of the change using derivative at the first point.

k2 = h0f(tn +
h0

2
, yn +

k1

2
) (B.0.5)

is used to make an estimate of the change using the derivative at midpoint determined

by k1/2 and h0/2.

k3 = h0f(tn +
h0

2
, yn +

k2

2
) (B.0.6)

is used to make a better estimate of the derivative at midpoint using k2/2 and h0/2.

k4 = h0f(tn + h0, yn + k3) (B.0.7)

is used to evaluate the derivative information at the end point using k3.
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