Quantum fluctuations in small lasers

A.F.J. Levi

The laser diode

- Photons experience non-linear threshold behavior transitioning from disordered light (spontaneous emission) to ordered light (stimulated emission) with increasing pump current
- Active volume $300 \times 0.14 \times 0.8 \mu \mathrm{~m}^{3}=34 \times 10^{-12} \mathrm{~cm}^{-3}=34 \mu \mathrm{~m}^{3}$
- $I_{\mathrm{th}}=3 \mathrm{~mA},\langle n\rangle=2 \times 10^{7},\langle s\rangle=10^{5}, \beta=10^{-4}, 7 \mathrm{ps}$ photon cavity roundtrip
- Existing mean-field theories (rate equations and Gaussian noise - Langevin) applies to these large systems

Ask a simple question:

When do photons know they are in a laser?

When do photons know they are in a laser?

- NOT one cavity round-trip
- Cavity formation takes many photon round trips
- Adiabatically decouple electron dynamics in experiment by using large cavity

When do photons know they are in a laser?

- NOT one cavity round-trip
- Cavity formation takes many photon round trips
- Spectral purity

Ask a simple question:

How do photon fluctuations below threshold impact lasing emission?

Fluctuations enhance light output below $I_{\text {th }}$

- Experimentally compare LED and LD using SAME geometry and active region
- AR coat LD to make LED

- Landau-Ginzburg phase transition analogy for bulk with below-threshold fluctuations into the lasing state
- Intensity fluctuations scale as $1 /\left(T / T_{\mathrm{C}}-1\right)^{r}$
- Experimentally $\gamma=1.04, T_{\mathrm{C}}=301.4 \mathrm{~K}$

Fluctuations and carrier pinning

- Experimentally compare LED and LD using SAME geometry and active region
- AR coat LD to make LED

- Carrier number n from L_{w} (spontaneous emission)
- Fluctuations in photons s remove carriers below threshold and contribute to the temperature dependence of laser diode threshold current, l_{th}
- There is a contribution, I_{f}, to the threshold current

Summary so far:

Photon fluctuations in large laser diodes:

Enhance lasing emission below the threshold current

Remove carriers below the threshold current

Contribute to the temperature dependence of the laser diode threshold current

Photon fluctuations are important!

Fluctuations described by Langevin equations

Single mode, single frequency laser diode rate equations in the presence of noise, F
$\frac{\mathrm{d} n}{\mathrm{dt}}=-\mathrm{G} s-\gamma_{\mathrm{e}} n+\frac{I}{\mathrm{e}}+\mathrm{F}_{n}(\mathrm{t})$, Equation governing carrier number $\frac{\mathrm{d} s}{\mathrm{dt}}=(\mathrm{G}-\kappa) s+\beta \mathrm{R}_{\mathrm{sp}}+\mathrm{F}_{s}(\mathrm{t})$, Equation governing photon number

$$
\mathrm{G}=a \Gamma\left(\mathrm{v}_{\mathrm{g}} / n_{\mathrm{r}}\right)\left(n-\mathrm{n}_{\mathrm{g}}\right) / V, \text { expression for gain }
$$

$$
\mathrm{R}_{\mathrm{sp}}=B n^{2} / V \text {, expression for spontaneous emission }
$$

Correlation of noise sources:

$\left\langle\mathrm{F}_{s}(t) \mathrm{F}_{s}\left(t^{\prime}\right)\right\rangle=\mathrm{V}_{s s} \delta\left(\mathrm{t}-\mathrm{t}^{\prime}\right)=\left[[\mathrm{G}+\kappa] s+\beta \mathrm{R}_{\mathrm{sp}}\right] \delta\left(\mathrm{t}-\mathrm{t}^{\prime}\right)$
$\left\langle\mathrm{F}_{n}(t) \mathrm{F}_{n}\left(t^{\prime}\right)\right\rangle=\mathrm{V}_{n n} \delta\left(\mathrm{t}-\mathrm{t}^{\prime}\right)=\left[\mathrm{G} s+\gamma_{e} n+\frac{\mathrm{I}}{\mathrm{e}}\right] \delta\left(\mathrm{t}-\mathrm{t}^{\prime}\right)$
$\left\langle\mathrm{F}_{s}(t) \mathrm{F}_{n}\left(t^{\prime}\right)\right\rangle=0$
$\delta\left(t-t^{\prime}\right)$ Ensures Markovian noise
Noise in particle number introduced by addition of external Gaussian noise - method valid only in large particle number (thermodynamic) limit
$\gamma_{\mathrm{e}}=$ Carrier recombination rate
$B=$ Radiative recombination rate
$I=$ Injection current
$\mathrm{e}=$ Electronic charge
$n=$ Number of electrons in cavity
$s=$ Photon number in the cavity
$a=$ Gain slope coeffiecient
$\Gamma=$ Mode confinement factor
$L=$ Length of cavity
$\mathrm{n}_{\mathrm{g}}=$ Carrier number at transparency
$\mathrm{v}_{\mathrm{g}}=$ Velocity of light
$n_{\mathrm{r}}=$ refractive index
$r_{1,2}=$ reflectivity of mirror 1,2
$\alpha_{\mathrm{i}}=$ internal loss
$\alpha_{\mathrm{m}}=\frac{1}{2 \mathrm{~L}} \log \left(\frac{1}{r_{1} r_{2}}\right)$, loss due to mirrors
$\kappa=\left(\alpha_{\mathrm{i}}+\alpha_{\mathrm{m}}\right)\left(\frac{\mathrm{v}_{\mathrm{g}}}{n_{\mathrm{r}}}\right)$, Loss rate in the
cavity
$V=$ Volume of cavity
$\mathrm{F}_{n}(\mathrm{t})=$ Random noise in carrier number
$\mathrm{F}_{s}(\mathrm{t})=$ Random noise in photon numpgr

Simulations of large and small laser diode using Langevin equations

Characterizing fluctuations: The Fano-factor

- Fano-factor $\left.=\sigma_{s}{ }^{2} /\langle s\rangle=\left(\left\langle s^{2}\right\rangle-\langle s\rangle^{2}\right) /<s\right\rangle$ measures the strength in photon fluctuations
- Peaks sharply across threshold if a threshold exists and the system undergoes a phase transition
- For Poisson fluctuations $\sigma_{s}{ }^{2} /<s>=1$

Previous work - quantum theory

- In a full quantum statistical approach both the medium and light is quantized
- This treatment of lasers can be broadly classified into two categories:
- A phase-space description in terms of Fokker-Plank equations by Haken, which accounts for the small fluctuations in the system about the mean
- Only calculated for large systems with small fluctuations
- The density matrix description of Scully and Lamb
- Only calculated for large systems with small fluctuations
- Theories are complete in the sense that they provide information about particle statistics and laser line width, but, in practice, they have only been solved for large systems

Ask a simple question:

How do small laser diodes behave?

What happens when a laser is made small?

- More spontaneous emission into lasing mode, $\beta \sim 0.1$
- Continuum mean-field rate equations predict "soft" threshold
- Active volume $0.12 \times 10^{-12} \mathrm{~cm}^{-3}=0.12 \mu \mathrm{~m}^{3}$
- $t_{\mathrm{th}}<1 \mathrm{~mA},\left\langle n>=2 \times 10^{5},\left\langle s>=10^{3}\right.\right.$
$\beta=\Omega / 4 \pi \longrightarrow L_{c}(\longrightarrow 0), \Omega(\rightarrow 4 \pi), \beta(\rightarrow 1)$
"Thresholdless" lasing

What happens when a laser is made small?

- More spontaneous emission into lasing mode, $\beta \sim 0.1$
- Fluctuations more important
- Active volume $0.12 \times 10^{-12} \mathrm{~cm}^{-3}$
- $I_{\mathrm{th}}<1 \mathrm{~mA},<n>=2 \times 10^{5},\langle s\rangle=10^{3}$

Optically pumped 6-QWs microdisk laser input-output characteristics

Room temperature emission spectra mode spacing $\Delta \lambda=1690-1542=148 \mathrm{~nm}$

Electrically driven microdisk laser diode

- Small active and cavity volume

Quantum fluctuations in a very small laser

- Small active and cavity volume
- Small electron number, n, and photon number, s

n excited
electron
states

- Fluctuations (<s $s^{2>}$ and $<n^{2>}$) and correlations (<ns>) in particle number become important
- Mean-field theories (rate equations and Gaussian noise - Langevin) can not be used
- What effect do large fluctuations and strong correlations have on steady-state and temporal behavior of small lasers in the quantum regime?

Quantum fluctuations in a very small laser

- Solving the full quantum mechanical problem is difficult at the meso-scale because the number of system states can become very large
- Small electron number, $n(\sim 300)$, and small photon number, s (~100)
- The number of system states scales as $\left(2^{n}\right) \times s$, where n is the number of two-level electronic states and s is the number of photons in the lasing mode
- The corresponding coefficient matrix has size $\left(2^{n}\right) s \times\left(2^{n}\right) s$ and so the problem becomes computationally challenging with increasing number of electronic states inside the cavity
- For only 20 two-level electronic states and 100 photons $\left(2^{n}\right)$ x s is state vector of length about 10^{8} (note $\left(2^{300}\right) \times 100 \sim 2 \times 10^{92}$ which is more than the number of atoms in the universe)
- Need a different approach

Master equations

- First-cut at capturing quantum effects
- Photon energy $\hbar \omega$
- Quantize photon number s and excited electron particle number n
- Weak coupling
- Use master equations (a set of differential equations in continuous probability functions, $P_{n s}$) to describe the system

$$
\begin{aligned}
& \mathrm{d}<n>/ \mathrm{dt}=I-B<n^{2}>-a \Gamma<n-n_{0}><s>/ V \\
& \mathrm{~d}<s>/ \mathrm{dt}=\beta B<n^{2}>+a \Gamma<n-n_{0}><s>/ V-\kappa<s>
\end{aligned}
$$

Carrier number, n

$$
\begin{aligned}
& \frac{\mathrm{dP}_{n, s}}{\mathrm{dt}}=-\kappa\left(\mathrm{sP}_{n, s}-(s+1) \mathrm{P}_{n, s+1}\right)-\left(s \mathrm{G}_{n} \mathrm{P}_{n, s}-(s-1) \mathrm{G}_{n+1} \mathrm{P}_{n+1, s-1}\right)-\left(s \mathrm{AP}_{n, s}-(s+1) \mathrm{AP}_{n-1, s+1}\right) \\
& -\beta B\left(n^{2} \mathrm{P}_{n, s}-(n+1)^{2} \mathrm{P}_{n+1, s-1}\right)-(1-\beta) B\left(n^{2} \mathrm{P}_{n, s}-(n+1)^{2} \mathrm{P}_{n+1, s}\right)-I\left(\mathrm{P}_{n, s}-\mathrm{P}_{n-1, s}\right)
\end{aligned}
$$

Continuum mean-field rate equation prediction

- Steady-state behavior predicted by continuum mean-field rate equations
- Threshold current $I_{\text {th }}$
- Carrier number n pinned when $I>I_{\text {th }}$

Continuum mean-field rate equation prediction

- Why carriers are pinned above $I_{\text {th }}$

In steady-state
$\frac{\mathrm{d} n}{\mathrm{dt}}=\frac{I}{\mathrm{e}}-\gamma_{\mathrm{e}} n-\mathrm{G} s=0$
$\frac{\mathrm{d} s}{\mathrm{dt}}=(\mathrm{G}-\kappa) s+\beta \mathrm{R}_{\mathrm{sp}}=0$
and
$s=\frac{\beta \mathrm{R}_{\mathrm{sp}}}{(\kappa-\mathrm{G})}$

Photon energy

As $G \rightarrow \kappa$ the number of photons in the system increases rapidly and Gs becomes large, so every extra electron injected into the system is converted into a photon, pinning the carrier density, n

Continuum mean-field rate equation prediction

- Continuum mean-field rate equations predicted transient response to step change in current
- Initial current $I=0 \mathrm{~mA}$
- Initial carrier number $n=0$
- Light output
- Turn-on delay, t_{d}
- Relaxation oscillation
- Carrier density
- n leads s
- Overshoot
- Relaxation oscillation

Continuum mean-field rate equation prediction

Mean-field versus probabilistic picture

Continuum mean-field rate equation (R.E.) prediction

Approximate first moment (<n>, <s>) continuum mean

- field calculation

Modeling discrete quantum system using continuum probability functions

Probabilistic picture, $P_{n, s}$ for n electrons and s photons
in the cavity

Time evolution of $10 \log _{10}\left(P_{n s}\right)$ for $\beta=1$

Time evolution of $10 \log _{10}\left(\mathrm{P}_{n s}\right)$ for $\beta=0.1$

Time evolution of $\mathrm{10}^{0} \log _{10}\left(\mathrm{P}_{n s}\right)$ for $\beta=0.01$

electron number, n

Master equation predictions for small cavity

Suppression of lasing due to fluctuations
 De-pinning of carriers

<ns> does not factorize (<n><s>) in the small cavity limit leading to suppression of lasing and de-pinning of carriers.

Parameters : Volume $=0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m} \times 10 \mathrm{~nm}, \Gamma=0.25, a=2.5 \times 10^{-18} \mathrm{~cm}^{2} \mathrm{~s}^{-1}, B=10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \beta=10^{-4}, n_{0}=10^{18} \mathrm{~cm}^{-3}$, $\alpha_{i}=1 \mathrm{~cm}^{-1}, n_{r}=4, r=1-10^{-6}$.
Figure . (a) $I=9.6 \mathrm{nA}$. (b) $I=48 \mathrm{nA}$. (c) $I=72 \mathrm{nA}$. (d) $I=192 \mathrm{nA}$.

Summary so far for small lasers:

Fluctuations more important in small devices:

Master equations used to model discrete quantum system using continuum probability functions, $P_{n s}$

Predict suppression of lasing and de-pinning of carriers due to fluctuations (contrary to expectations of continuum mean-field rate equations)

Need a different approach to understand the origin of these predictions (e.g. plot quantum trajectory)

Laser simulation by Monte Carlo method

- At time t, system in state (n, s) has a choice to participate in six independent processes
- The time constants for different processes at time t, is estimated using the rate equation rates, e.g. photon cavity decay rate is

$$
\left(\tau_{\text {decay }}=1 / \kappa s\right)
$$

- System allowed to perform random walk on a 2D grid

Laser simulation by Monte Carlo method

- Probabilities calculated from averages over multiple trajectories

Steady state master equation solution to probability, $\boldsymbol{P}_{n, s}$
Parameters : Volume $=0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m} \times 10 \mathrm{~nm}, \Gamma=0.25, a=2.5 \times 10^{-18} \mathrm{~cm}^{2} \mathrm{~s}^{-1}, B=10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \beta=10^{-4}, n_{0}=10^{18} \mathrm{~cm}^{-3}$, $\alpha_{i}=1 \mathrm{~cm}^{-1}, n_{r}=4, r=1-10^{-6}, I=192 \mathrm{nA}$.

System trajectories by Monte Carlo method

Parameters: Volume $=0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m} \times 10 \mathrm{~nm}, \Gamma=0.25, a=2.5 \times 10^{-18} \mathrm{~cm}^{2} \mathrm{~s}^{-1}, B=10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \beta=10^{-4}, n_{0}=10^{18} \mathrm{~cm}^{-3}$, $\alpha_{i}=1 \mathrm{~cm}^{-1}, n_{r}=4, r=1-10^{-6}$.
Figure . (a) $I=9.6 \mathrm{nA}$. (b) $I=48 \mathrm{nA}$. (c) $I=72 \mathrm{nA}$. (d) $I=192 \mathrm{nA}$. Electrons (red), photons (blue).

Master equation predictions for small cavity

Suppression of lasing due to fluctuations
 De-pinning of carriers

<ns> does not factorize (<n><s>) in the small cavity limit leading to suppression of lasing and de-pinning of carriers.

Parameters : Volume $=0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m} \times 10 \mathrm{~nm}, \Gamma=0.25, a=2.5 \times 10^{-18} \mathrm{~cm}^{2} \mathrm{~s}^{-1}, B=10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \beta=10^{-4}, n_{0}=10^{18} \mathrm{~cm}^{-3}$, $\alpha_{i}=1 \mathrm{~cm}^{-1}, n_{r}=4, r=1-10^{-6}$.
Figure . (a) $I=9.6 \mathrm{nA}$. (b) $I=48 \mathrm{nA}$. (c) $I=72 \mathrm{nA}$. (d) $I=192 \mathrm{nA}$.

Master equation involving two emission modes

- Must account for each electron - so if it is not creating lasing photons - where is it going?
- Excess electrons create photons of another emission mode (p) which decays at the same rate as lasing photons and does not participate in any stimulated processes.

$$
\begin{aligned}
<P_{n, s} s^{\prime}=-\kappa(s) & \left.P_{n, s, s^{\prime \prime}}-(s+1) P_{n, s+1, s^{\prime \prime}}\right)-\left(s G_{n} P_{n, s, s^{\prime \prime}}-(s-1) \mathrm{G}_{n+1} P_{n,+1 s-1, s^{\prime \prime}}\right)-\left(s A P_{n, s, s^{\prime \prime}}-(s+1) \mathrm{A} P_{n,-1} s+1, s^{\prime \prime}\right) \\
& -\beta B\left(n^{2} P_{n, s, s, s^{\prime \prime}}-(n+1)^{2} P_{n+1, s-1, s^{\prime \prime}}\right)-(1-\beta) B\left(n^{2} P_{n, s, s^{\prime \prime}}(n+1)^{2} P_{n+1, s, s^{\prime \prime}-1,}\right)-I\left(P_{n, s}-P_{n-1, s}\right) \\
& -\kappa\left(s P_{n, s, s^{\prime \prime}}-(s+1) P_{n, s+1, s^{\prime \prime}+1}\right)
\end{aligned}
$$

where $P_{n, s, s^{\prime \prime}}$ is the probability of a state having n electrons, s lasing photons, $s "$ non-lasing photons.

Probability distributions for different β

Parameters : $\left(1 \mu \mathrm{~m}^{*} 1 \mathrm{~nm} * 1 \mathrm{~nm}\right)=1 \mathrm{e}-18 \mathrm{~cm}^{3}, \Gamma=0.25, a=2.5 \mathrm{e}-018 \mathrm{~cm}^{2} / \mathrm{sec}, B=1 \mathrm{e}-10 \mathrm{~cm}^{3} / \mathrm{sec}, \mathrm{n}_{\mathrm{g}}=1 \mathrm{e}+18 / \mathrm{cm}^{3}, \alpha_{l}=10 \mathrm{~cm}^{-1}, n_{r}=$ $4, r=0.999, \kappa=\kappa_{\text {calc }}{ }^{*} 1 \mathrm{e}-2, \mathrm{P}=10$ electron/ns (= 1.6 nA)
$\beta=1$

$\beta=0.01$

$\beta=0.0001$

Comparison with random walk predictions

Master equation results

Monte Carlo results

Parameters: Volume $=0.1 \mu \mathrm{~m} \times 0.1 \mu \mathrm{~m} \times 10 \mathrm{~nm}, \Gamma=0.25, a=2.5 \times 10^{-18} \mathrm{~cm}^{2} \mathrm{~s}^{-1}, B=10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \beta=10^{-4}, n_{0}=10^{18} \mathrm{~cm}^{-3}$, $\alpha_{i}=1 \mathrm{~cm}^{-1}, n_{r}=4, r=1-10^{-6}$.
Figure . (a) $I=9.6 \mathrm{nA}$. (b) $I=48 \mathrm{nA}$. (c) $I=72 \mathrm{nA}$. (d) $I=192 \mathrm{nA}$.

Temporal characteristics with system size

Parameters: $\mathrm{L}_{\mathrm{c}}=0.1 \mu \mathrm{~m}, \Gamma=0.25, a=2.5 \mathrm{e}-018 \mathrm{~cm}^{2} / \mathrm{sec}, B=1 \mathrm{e}-10 \mathrm{~cm}^{3} / \mathrm{sec}, \beta=0.1, \mathrm{n}_{\mathrm{g}}=1 \mathrm{e}+18 / \mathrm{cm}^{3}, \alpha_{l}=10 \mathrm{~cm}^{-1}, n_{r}=4, r=$ 0.999, $\kappa=\kappa_{\text {calc }}{ }^{*} 1 \mathrm{e}-2$.

Figure . Transient behavior of first moments of electrons and photons for $P=100$ electron/ns (= 16 nA).
Transient Master equation results (blue) and rate equation results (red). (a) mean photon number vs time. (b) mean electron number vs time. ($0.1 \mu \mathrm{~m}^{*} 10 \mathrm{~nm} \mathrm{~m}^{*} 10 \mathrm{~nm}=1 \mathrm{e}-17 \mathrm{~cm}^{3}$). (c) mean electron number vs time. (d) mean photon number vs time. $\left(0.1 \mu \mathrm{~m}^{*} 0.1 \mu \mathrm{~m}\right.$ *10nm = $1 \mathrm{e}-16 \mathrm{~cm}^{3}$).

Temporal behavior - large signal analysis

1. Response to a large step change in current (large signal)

Parameters:
Volume $=0.1 \mu \mathrm{~m} \times 10 \mathrm{~nm} \times 10 \mathrm{~nm}$,
$\Gamma=0.25, a=2.5 \times 10^{-18} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$,
$B=10^{-10} \mathrm{~cm}^{3} \mathrm{~s}^{-1}, \beta=10^{-1}$,
$n_{0}=10^{18} \mathrm{~cm}^{-3}, \alpha_{\mathrm{i}}=1 \mathrm{~cm}^{-1}, n_{r}=4$,
$r=1-10^{-6}, I=16 \mathrm{nA}$.
2. Time jitter $\left(t_{d}\right)$ decreases with increasing pump

Summary of steady-state calculations

Figure . (a) Fabry - Perot laser. (d) Micro-disk laser. (g) Small laser (schematic diagram).
(b), (e), (h) Mean photon number vs current. (c), (f), (i) Mean electron number vs current.

Making lasers with small active region volume

- State-of-the-art quantum wire photonic crystal lasers and QD micropillar lasers can be made with very small active regions
- Active volume $V \sim 10^{-4} \mu \mathrm{~m}^{3}$ can have $n \sim 100-$ 500
- Examples:
- EPFL: Kirill Atlasov, Eli Kapon, et al., "Short ($\sim 1 \mu \mathrm{~m}$) Quantum-Wire Single-Mode PhotonicCrystal Microcavity Laser", CTuH4 CLEO/IQEC 2009
- Estimate active volume $V \sim 3 \times 5 \mathrm{~nm} \times 5 \mathrm{~nm} \times$ $1000 \mathrm{~nm}=75 \times 10^{-18} \mathrm{~cm}^{3}=0.75 \times 10^{-4} \mu \mathrm{~m}^{3}$
- Fluctuations important since $n \sim 100-500$
- U. Würzburg: A. Forchel et al., "Single quantum dot controlled gain modulation in high-Q micropillar lasers", Phys. Status Solidi B 246, No. 2, 277-282 (2009), Appl. Phys. Lett. 93, 061104 (2008)
- Quantum fluctuation effects should dominate device performance at low pump rates and $\beta<$ 10^{-2}

Making lasers with small active region volume

- Calculations suggest that observation of both enhanced spontaneous emission and suppression of lasing due to quantum fluctuations requires $\beta<10^{-2}$

00000
000000
00000

Conclusions

1. Fluctuations in \boldsymbol{n} and \boldsymbol{s} are important in determining the behavior of both large and small laser diodes
2. In large lasers fluctuations in s play an important role in determining the temperature dependence of laser threshold current
3. Quantum fluctuations in small lasers (and the fact that a ground state exists) can enhance spontaneous emission and suppress lasing near threshold (in contrast to predictions of Landau-Ginzburg in which fluctuations enhance emission below threshold). Dynamic switching between two characteristic system states dominates the fluctuations. Correlations between n discrete excited states and s discrete photons create a non-Poisson probability distribution and damp the average dynamic response of laser emission

Finite sized systems behave

 differently and, in particular, fluctuations are important!Learn more: Phys. Rev. Lett. 102, 053902 (2009)

Acknowledgements

Kaushik Roy Choudhury James O'Gorman Stephan Haas

DARPA CAD-QT (Dennis Healy) NSF NIRT

